
Arbitrage in Crypto Markets:

An Analysis of Primary Ethereum Blockchain Data

Magnus Hansson∗

Department of Economics at University of Gothenburg

hansson.carl.magnus@gmail.com

Link to latest version

November 9, 2022

Abstract

The Ethereum blockchain is a decentralized computing platform providing peer-to-

peer financial services. Decentralized exchanges, which run on the blockchain, enable

matching of buyers and sellers without any central third party, and are distinct from

the centralized “off-chain” cryptocurrency markets often studied in the literature. The

decentralized markets facilitate trade in cryptocurrencies and other digital assets and

have daily turnovers of several billion dollars. In this paper, I study how arbitrageurs

on the blockchain contribute to price discovery and price efficiency in decentralized

“on-chain” markets. I collect a transaction-level dataset of primary data from the

Ethereum blockchain and cleanly identify a set of completed cross-exchange and tri-

angular arbitrages. To investigate the speed at which arbitrage opportunities are

eliminated, I study how sensitive arbitrage profits are to when the trades execute. I

show that most arbitrage profits are made immediately after the occurrence of price

anomalies, indicating that decentralized markets adjust fast after a shock to the no-

arbitrage price.

JEL Classification: C55, C57, E42, G12, G14, G23

Keywords: Arbitrage, Price efficiency, Decentralized exchanges, Ethereum, Blockchain,

Decentralized finance, Automated market maker, Cryptocurrency

∗I thank Erik Hjalmarsson and Andreas Dzemski for valuable comments and suggestions. I am grateful

for advice related to the data processing from Thomas Jay Rush at TrueBlocks. I also thank seminar

participants at the University of Gothenburg.

1

mailto:hansson.carl.magnus@gmail.com
https://magnushansson.xyz/research

1 Introduction

The Ethereum blockchain is a decentralized computing platform, and one of its main use

cases is peer-to-peer financial services. Decentralized exchanges run on Ethereum and ac-

commodate trading of digital assets, including derivatives of bitcoin and ether (Ethereum’s

native currency), and cryptocurrencies pegged to fiat currencies (stablecoins). The aggre-

gated daily trading volume of these exchanges is several billion dollars, and trading is

settled on the blockchain without intermediaries. As it is expensive to keep distributed

order books, decentralized exchanges use algorithms to determine prices. Conditional on

a trade, arbitrageurs can precisely predict changes to these prices due to the transparency

of the blockchain. These arbitrageurs help in the price discovery process by trading away

price imbalances between exchanges (cross-exchange arbitrage) and between relative ex-

change rates in multiple currencies (triangular arbitrage).

My paper answers the question: How do arbitrageurs on the blockchain contribute to

price efficiency in decentralized markets? Arbitrageurs on the blockchain have been shown

to act similar to high frequency traders in traditional markets (Daian et al., 2019), however

it is unclear to what extent they contribute to the price discovery process. To investigate

this, I collect a transaction-level dataset of primary data from the Ethereum blockchain,

and track transactions individually. As Ethereum data are fully transparent, I am able to

identify a clean set of pure arbitrage trades, and establish how prior shocks to exchange

rates predict arbitrages. To investigate the speed at which arbitrage opportunities are

eliminated, I study how sensitive arbitrage profits are to when the trades execute. I

show that most arbitrage profits are made almost immediately after the occurrence of

price anomalies, indicating that decentralized markets adjust fast after a shock to the

no-arbitrage price.

This paper introduces primary decentralized exchange data from the Ethereum

blockchain to the financial literature. The main source of the data is Ethereum’s largest

exchange Uniswap. Every trade that is executed on decentralized exchanges are stored

on the blockchain. The transaction data contain detailed information about the trades,

including what currencies and amounts are traded, and who made the trades. Multiple

trades can be executed within one atomic Ethereum transaction. Arbitrageurs are ex-

pected to use this functionality and execute all trades related to an arbitrage as a bundle

by coding them into one Ethereum transaction. This makes arbitrage on Ethereum as close

to risk free as possible, with the caveat that transaction fees still need to be paid for failed

arbitrages. Due to the unique transparency of the blockchain data, I am able to classify

bundles of trades as arbitrages by identifying two or more trades that form a closed loop,

2

such that the output amount and currency of one trade is equal to the input amount and

currency of the next trade. For each arbitrage, metadata such as the number of trades,

costs, and profits are calculated. The transparency of the decentralized exchanges also

provide data reliability as no manipulation of the data is possible besides actual trading.1

Previous economics literature studying cryptocurrency arbitrage have observed price dif-

ferences on traditional trading exchanges operating outside of the blockchain ecosystem,

also called centralized exchanges. This literature suggests that there have been large in-

efficiencies in the cross-border cryptocurrency markets (Makarov and Schoar, 2020), but

that the price deviations have become less pronounced since 2018 (Shynkevich, 2021).

My paper extends these studies by analyzing price efficiency on decentralized exchanges

operating on the blockchain itself and by studying realized arbitrages. A related but dis-

tinctly different literature in computer science has studied cryptocurrency arbitrage with

primary blockchain data. Wang et al. (2021b) give an overview of triangular arbitrages

on Uniswap, and most related to my paper is Berg et al. (2022), who show that triangu-

lar arbitrages are more common in times of high market volatility and that many trades

execute at unfavourable prices.

I find that arbitrages are very sensitive to the order of execution and that arbitrage

windows close fast. Transactions on the Ethereum blockchain are executed sequentially

in batches called blocks. These blocks hold on average 200 Ethereum transactions and are

executed on average every 14 seconds. Arbitrageurs eliminate price anomalies fast, often

as soon as they arise and often within the blocks. Exchange rate changes from trading

immediately prior to the arbitrage are the strongest predictor of arbitrage profits. This

implies that prices at the end of the blocks are likely to reflect market prices. Decentralized

exchanges use the end-of-block prices as starting prices in the next block (Adams, Zins-

meister, and Robinson, 2020), and traders on decentralized exchanges use these to initiate

their orders. Furthermore, as the blockchain is a closed system, not easily connected to

the “outside world”, the stored end-of-block prices are used by other decentralized finance

applications as on-chain reference prices. My findings indicate that these reference prices

observed on decentralized exchanges and used by traders on the blockchain are likely to

be arbitrage-free. The automated arbitrage activity leads to improved price efficiency on

1Alexander and Dakos (2020) show that many empirical published papers studying cryptocurrency use

faulty data. A study filed to the U.S. Securities and Exchange Commission by Bitwise Asset Management

(SEC, 2019) found that 95% of all reported trading volume on off-chain cryptocurrency exchanges is

non-economic “wash” trading. Similarly, Cong et al. (2019) show that many unregulated cryptocurrency

exchanges engage in significant wash trading that affects exchange ranking, cryptocurrency exchange rates,

and volatility. Victor and Weintraud (2021) find that 30% of all traded tokens on the order book exchanges

EtherDelta and IDXE have been subject to wash trading.

3

the blockchain, similar to how algorithmic trading observed in traditional markets reduces

the frequency of arbitrage (Chaboud et al., 2014).

To study the sensitivity of arbitrage timing, I design a counterfactual simulation where

bundles of arbitrage trades are re-executed with different timing compared to their original

counterparts. By creating an alternative order of the full transaction history, I can evaluate

if arbitrage transactions would have been profitable in different states of the world, and

accordingly measure how sensitive arbitrages are to timing. By re-executing arbitrage

transactions prior to when they initially occurred, I can observe how far back arbitrage

transactions are profitable and thus for how long the arbitrage opportunities existed. This

gives an indication to how fast (efficient) the market is to correct price imbalances. The

simulation is made possible because Ethereum transactions are programmatically defined

and the transactions’ code can be observed on the blockchain. Therefore, it is possible to

re-execute transactions with changed parameters ex-post and thus simulate an alternative

reality. This is a unique feature of transparent blockchains, like Ethereum, and used in this

study to form a detailed view about the price efficiency on the decentralized exchanges.

The counterfactual simulation shows that arbitrages are very time sensitive. 69% of

the realized arbitrage transactions are no longer profitable if they are re-executed as the

first transaction in their own block. As it is more expensive to execute transactions early in

the block, this number is adjusted to 15% if the transaction costs are also adjusted to what

they would have been in the first position. In these cases, the arbitrage opportunities occur

within the blocks and the arbitrage transactions capitalizing on the opportunities shortly

afterwards. Practically, this means that arbitrageurs monitor pending transactions and

place their own trades to immediately neutralize price imbalances. If prices are observed

on a block-level instead of on a transaction-level, these price anomalies are never seen.

This means that the majority of the arbitrage profits are made within a window of 14

seconds. As traders on decentralized exchanges observe prices from the previous block,

they are therefore likely to observe and trade based on arbitrage-free prices. The analysis

thus indicates that most of the price discrepancies are arbitraged away with high efficiency

within the blocks, leaving the end-of-block price close to the “equilibrium” price. When

re-executing the arbitrage transactions at the beginning of previous blocks, only 10% of

the arbitrage opportunities exist 5 blocks back (approximately 1 minute in calendar time).

To empirically investigates how far back exchange rate changes affect arbitrages, I

conduct a predictive study in which price imbalances are used to estimate whether or

not an arbitrage transaction is likely to occur. Arbitrages are solely created by trading

that off-sets the no-arbitrage price. Large changes to the exchange rate should therefore

signal future arbitrage transactions. To discriminate arbitrage transactions from regular

4

trading, a random control group is constructed, consisting of randomly sampled non-

arbitrage transactions. As the decentralized exchange data are fully transparent on a

transaction-level basis, the exact price impacts of prior trading to these transactions are

calculated. The predictors are defined by changes to the exchange rates caused by trading

up to 10 blocks (approximately 2 minutes) prior to the studied transactions.

The predictive exercise shows that price changes from prior trading in the same block

and trading up to 4 blocks back significantly predict if a transaction is a bundle of arbitrage

trades or not. Thus, trading up to one minute prior to a transaction helps to predict

whether an arbitrage transaction will occur. These results hold for the full sample, as well

as for 5 month subsamples constructed to pick up dynamics in the data.

To evaluate how prior trading trigger arbitrages, arbitrage net profits are regressed

on exchange rate changes caused by the trading up to 10 blocks prior to the arbitrage

transactions. The analysis indicates to what degree arbitrageurs are able to profit from

prior imbalances in the exchange rate and at what speed these opportunities are arbitraged

away. This speaks to the efficiency of the decentralized markets, and to what extent these

markets are able to track the no-arbitrage price.

When regressing realized arbitrage net profits on previous exchange rate changes,

within-block trading is far more important for arbitrage profits than price changes from

previous blocks. When using the full sample, trading in the same block as the arbitrage

transactions and trading in the previous block are both significantly affecting net profits.

However, price changes from within the block have a significantly stronger effect. Arbi-

trage windows therefore tend to close, on average, in 14 seconds. Furthermore, when the

analysis is run on 5-month subsamples, the results are stronger for the later part of the

sample. Between May 2021 to September 2021 and October 2021 to February 2022, only

price changes from within the arbitrage block affect arbitrage net profits. The markets

are more efficient and prices adjust faster to the no-arbitrage price after a shock, possi-

bly explained by increased arbitrage competition in the later part of the sample. These

results are consistent with the observations from the counterfactual simulation, and again

indicate that end-of-block reference prices are likely to be arbitrage-free.

The remainder of the paper is organized as follows: Section 2 gives a background to the

Ethereum ecosystem, its native currency ether, and decentralized exchanges operating on

the blockchain; Section 3 describes the data collection and arbitrage classification strategy;

Section 4 outline the empirical analysis and the results; and Section 5 presents concluding

remarks.

5

2 The Ethereum Blockchain and Decentralized Exchanges

Section 2 provides the necessary background for the rest of the paper. Section 2.1 covers

the Ethereum blockchain and its native currency ether, Section 2.2 introduces decentral-

ized exchanges, and Section 2.3 demonstrates how arbitrage is conducted on decentralized

exchanges. Readers familiar with the Ethereum blockchain and decentralized exchanges

can comfortably skip to Section 2.3.

2.1 Ether and Ethereum

Bitcoin is a distributed ledger allowing users to transact the cryptocurrency bitcoin with-

out any third party, and records the transactions in its blockchain database. Harvey et al.

(2022) categorize the Ethereum blockchain, together with its main competitors (Solana,

Avalanche, Cardano, and Algorand), differently than Bitcoin, as Ethereum extends Bit-

coin’s distributed ledger to a universal decentralized computing system. Ethereum (Bu-

terin, 2013; Wood, 2014), building on Dwork and Naor (1992), Back (2002), and Nakamoto

(2008) amongst others, is in essence a network of computer nodes sharing the same

database and global state. The global state is a large data structure that describes the

state of the world at a specific time, containing, for instance, account balances for all

Ethereum users. Formally, Ethereum is a so-called peer-to-peer replicated state machine

capable of executing user transactions without a central agency.2 The network nodes stay

in sync with each other as the global state is updated discretely by an execution model

called the Ethereum Virtual Machine.3 Nodes are operated by network participants that

run an Ethereum client software that follows the rules of the Ethereum protocol described

in Wood (2014).

Figure 1 gives a general overview of the route of Ethereum transactions. Users create

new transactions and send them to the Ethereum network for validation. The transactions

can either be sent privately or publicly. Miners batch the transactions into blocks and

spend computing resources to guarantee that the transactions are valid.4 Once the block

is validated, it is linked to the previous blocks of transactions in a blockchain, and the

global state is updated. The rest of Section 2.1 explains each part of Figure 1 in more

detail, and gives an institutional overview of the Ethereum blockchain.

2For an overview of cryptocurrencies and decentralized finance see Härdle, Harvey, and Reule (2020),

Makarov and Schoar (2022), and Harvey et al. (2022).
3Not to be confused with the Ethereum Virtual Mavericks.
4On the 15th of September 2022, Ethereum changed the consensus mechanism from proof-of-work to

proof-of-stake in a software upgrade called the Merge. In the current version of this paper only transactions

from before the merge are analyzed and the term miner is used for this distinction and for simplicity.

6

Users

User0

User1

User2

...

UserA

UserA−1

New transactions

t0,$$
t1,$
t2,$$$

...

tPb,$$$

tPb−1,$

Node

Node

Node

Node

Monitoring

Private relays

Miners

Miner0

Miner1

Miner2

...

MinerM

MinerM−1

Block b

t2,$$$
tPb,$$$

t0,$$

...

t1,$

tPb−1,$

Blockchain

Block0

Block1

Block2

State transition

...

Blockb

Blockb−1

Figure 1: The Ethereum blockchain.

2.1.1 Ethereum transactions

In traditional markets, transactions are completed agreements between a buyer and a seller

for some asset. In the blockchain ecosystem the term transaction is defined more broadly,

and refers to a computer instruction that is not completed until it is validated by the

network. A financial “transaction” on a blockchain is therefore more similar to an order

in a traditional market.

Ethereum transactions are computer code that defines a set of instructions for how the

Ethereum Virtual Machine should update the global state. In the Ethereum ecosystem

transactions are the sole way users interact with the Ethereum network, and thus with

each other. These transactions are cryptographically signed by their users and represent

one or several of the following actions: Send cryptocurrency to another user, create a

smart contract (Szabo, 1997), and interact with an already existing smart contract. One

Ethereum transaction can hold several instructions at once, for example interact with

multiple smart contracts within a single transaction.

A regular transaction, transacting currency from one user to another, functions in a

similar way to transactions in traditional banks or on the Bitcoin network, where one user

can send currency to another. A smart contract creating transaction is an Ethereum trans-

action with embedded computer code that defines a software application. By sending this

code to the Ethereum network, it is uploaded and stored in the blockchain’s “database”,

and is accessible to every user. All decentralized applications on Ethereum are smart

7

contracts. These include decentralized finance (DeFi) applications such as decentralized

exchanges (DEXes), which facilitate trading of digital assets on the blockchain. The last

type of Ethereum transactions are interactions with existing smart contracts. For exam-

ple, when users trade on decentralized exchanges they send transactions to smart contracts

with instructions on how to execute the trades.

Users pay a fee, denominated in Ethereum’s native currency ether, to the network to

execute their transactions. The size of the fee depends on the complexity of the transaction.

Ethereum transactions can take up different amounts of computational work in terms of

processing, memory, and network usage. This computational work is called gas. The ex

post transaction fee is equal to the amount of gas used times the price for each gas unit

denominated in ether.5

2.1.2 Atomicity

Ethereum transactions are atomic: Either every operation in the transaction is success-

fully executed or the whole transaction is cancelled. There are three ways an Ethereum

transaction can fail: The transaction fee is set too low, a condition in the transaction

code is not met, or the transaction is conflicting with the Ethereum state (Zhou et al.,

2021a). Users can, therefore, condition transactions such that they only execute if certain

conditions are met.

2.1.3 Transaction validation and blocks

Once a transaction is created and cryptographically signed by its user, it is not executed

right away. The transaction is sent to a node that shares it with other nodes, and thus

throughout the network. The transaction is now public and placed in a queue called

the mempool (memory pool) to be executed. Special nodes in the network called miners

compete with each other using processing power to validate transactions in exchange

for transactions fees. During the sample period covered by the current analysis, the

validation is done by a process called proof-of-work. Miners monitor the mempool and

batch pending transactions into blocks. Miners are incentivized to include transactions

that pay the highest transaction fees, and sort these transactions into the block based on

their fees. This means that users can pay more to get their transactions executed faster

(Zhou et al., 2021b). A block is considered full of transactions when the computational

threshold, denominated in gas, is met. Thus, the number of transactions in a block varies

depending on how complex they are. When a miner has selected a set of transactions,

5The Ethereum Virtual Machine is a quasi-Turing-complete machine as gas costs bound the total

amount of computation.

8

representing a full block, it tries to validate the block as fast as possible. Different miners

can select different transactions from the mempool to try to validate. Transactions that

pay a below-market transaction fee might be held in the mempool until network demand

goes down and they become profitable for miners to validate. There is no guarantee that

pending transactions in the mempool that pay low gas fees will ever be executed.

A new block is validated on average every 14 seconds, but block times over 1 minute are

not uncommon. The expected block time is a constant and the average amount of comput-

ing power needed to mine a block is dynamically adjusted to match this. Approximately

15 transactions are processed per second, although the variation is high.6 When a block

is mined at a mining node, it is sent out to other nodes to be checked and shared. The

nodes verify that the miner’s proof is correct, execute the transactions in the new block,

and share the block to the rest of the network. When the majority of the nodes in the

network have done so the new global state is agreed upon. The blockchain is immutable

and guarantees that the transaction history cannot be changed, as any historical alteration

changes the entirety of the blockchain. Every historic transaction on the blockchain must

be public and accessible, such that the current state can always be verified.

It is important to note that the Ethereum global state is updated sequentially for each

transaction, and each transaction operates independently on the current state. Therefore

the order of transactions in a block matters.7 The financial markets on Ethereum are

combinations of continuous and discrete markets. The mined transactions are executed

discretely, sequentially and independently. However, which transactions are executed and

in what order, is subject to the mining process. This process is economically equivalent to

a continuous time auction that finishes when a block is mined, and a new auction begins

(Daian et al., 2019).

2.1.4 Front-running

Since Ethereum transactions are executed sequentially and operate on the Ethereum state

independently, the transaction ordering in a block is of high importance. This leads to

rent-seeking behavior where users try to front-run lucrative transactions. On Ethereum

all information is public and front-running is the practice of acting fast on complex pub-

lic information, similar to how high frequency traders operate in traditional markets.8

Most front-running activity on Ethereum takes place on decentralized exchanges (Torres,

Camino, and State, 2021). As miners sort transactions depending on their transaction

6Researchers are working on scalability of blockchain systems as there is a trade-off between transaction

throughput and decentralized security.
7For a technical overview see Appendix A.
8For an overview of front-running on blockchains see Eskandari, Moosavi, and Clark (2020).

9

costs, users can post transactions with higher transaction fees with the hope of getting

their transactions executed before others’ and capture potential profits. Daian et al. (2019)

show how transaction cost auctions take place to front-run profitable opportunities and

capture what they call miner extractable value (MEV).910 Miner extractable value is the

profits a miner would be able to extract from a block by re-ordering and inserting transac-

tions. This includes transactions fees, but also non-standard extraction methods such as

arbitrages. The total amount of present miner extractable value is unknown, although es-

timations can be made ex post. Qin, Zhou, and Gervais (2021) estimate that front-running

profits of $541M USD were extracted under their sample period of 32 months.

2.1.5 Private transactions

Miners have the ability to choose which transactions to batch into blocks and attempt

to validate. A transaction can be included in a block as long as it is signed by its user,

regardless if the miner retrieved the transaction from the public mempool or in any other

way. A feature of the Ethereum ecosystem is the ability to relay transactions privately

to miners. This provides pre-trade privacy by bypassing the public mempool. At the

time of writing, 86% of Ethereum’s mining capacity is supplied by miners using private

relay functionality that accepts private transactions.11 Private relays allow the option to

send transaction bundles directly to miners. Traders use this to obfuscate transactions

to mitigate font-running and miners accept these transactions provided that they pay

sufficient gas fees.

A transaction bundle is one or several Ethereum transactions that the miner guarantees

will be executed in sequence. This is similar to the atomic functionality of the single

Ethereum transaction, but extended over several transactions and not guaranteed on a

protocol level. The private relay guarantees that either all transactions are executed or

none at all. Private transaction bundles can target a specific block for which it is valid.

Furthermore, as all nodes in the network need to execute and verify each transaction in a

new block to update the global state, private transactions become public as soon as they

are included in a verified block.

9Miner extractable value, is more often called maximal extractable value, and sometimes blockchain

extractable value since not only miners participate in capturing MEV.
10This phenomenon has attracted attention from economists, one example is researchers at the Bank

for International Settlements writing that “Miner extractable value is an intrinsic shortcoming of pseudo-

anonymous blockchains. Addressing this form of market manipulation may call for new regulatory ap-

proaches to this new class of intermediaries.” (Bank for International Settlements, 2022), referring to

block validators as intermediaries.
11https://docs.flashbots.net/Flashbots-auction/searchers/faq/

10

https://docs.flashbots.net/Flashbots-auction/searchers/faq/

2.2 Decentralized exchanges

Market makers, in traditional limit order book exchanges, connect buyers and sellers to

accommodate trading, and use centralized technology to keep track of the order book.

In contrast, decentralized exchanges are smart contracts on the blockchain, operating as

autonomous and non-custodial market places without an order book. These exchanges

have gained traction and is one of the fastest growing sectors within decentralized finance

(Makarov and Schoar, 2022). Users send transactions with trading instructions to the

exchange, trading is accomplished peer-to-peer and the transactions are settled on the

blockchain without intermediaries.

A decentralized exchange consists of three parts: Liquidity providers that deposit

liquidity to the exchange in return for trading fees, liquidity takers that trade one asset

for another, and a price-discovery mechanism (Zhou et al., 2021b). The core difference

distinguishing decentralized exchanges from centralized exchanges is the market making

mechanism. It is expensive to keep a decentralized order book. Therefore, decentralized

exchanges use market making algorithms to facilitate trading (Angeris et al., 2021).12

2.2.1 Automated market makers

Automated market makers (Savage, 1971; Hanson, 2003; Berg and Proebsting, 2009) are

a set of algorithmic markets using scoring rules for market and decision making, and

resemble general models of non-cooperative trading equilibriums, such as Shapley and

Shubik (1977). Uniswap (Zhang, Chen, and Park, 2018; Adams, Zinsmeister, and Robin-

son, 2020; Adams et al., 2021) is the largest decentralized exchange and exists as a set of

smart contracts uploaded to Ethereum. Uniswap is an automated market maker that uses

a constant product formula to decide the exchange rate between two currencies, and has

been formally shown to track a reference market price (Angeris et al., 2021).

Consider two assets X and Y , and their exchange pair X/Y . The exchange rate is

calculated such that the product of the respective liquidity pools is kept constant,

k = x · y. (1)

Here k is called the invariant and represents the depth of the market, and x and y are the

amounts of asset X and asset Y deposited by liquidity providers into the liquidity pools.13

12In addition to centralized and decentralized exchanges, hybrid exchanges exist. Hybrid exchanges keep

a centralized order book off-chain, but settle trading on-chain.
13The assets in the liquidity pools are fairly constant, as liquidity providers do not frequently move their

assets across pools (Heimbach, Wang, and Wattenhofer, 2021).

11

The value of k is initially determined by the liquidity added to the pools when the trading

pair was initiated. The invariant, k, changes in 3 ways: Liquidity providers add or remove

liquidity, trading fees after each trade are added to the pools, or by “donations”. Any

added liquidity to the liquidity pools such that the ratio of x and y is not kept constant

is considered a donation and changes the value of k disproportionately.

Contrary to buyers and sellers on limit order book exchanges, traders on constant

product markets do not provide a price for one asset in terms of another. Instead, liquidity

providers deposit liquidity to both assets’ liquidity pools, and it is up to the liquidity

takers, i.e., the traders, to decide which assets to trade given the current exchange rate.

If a liquidity taker wants to swap δy of asset Y for δx of asset X, the liquidity pools are

altered such that,

k = (x− δx) · (y + δy) (2)

and they have to pay,

δy =
k

x− δx
− y (3)

of asset Y at the exchange rate δx
δy
, as the invariant needs to stay constant.1415 The

exchange rate converges to the marginal exchange rate as the liquidity pools get sufficiently

large,

δx
δy

=
δx

k
x−δx

− y
=

x

y
− δx

y
→ x

y
as δx → 0. (4)

The difference between the exchange rate and the marginal exchange rate is the price

slippage. If the amount traded is significant in relation to the amount in the liquidity

pools, price slippage occurs, and this is how arbitrage is created. Cartea, Drissi, and

Monga (2022) show that it is sub-optimal to execute large orders in one trade as it leads

to price slippage and unbalancing of the exchange rate.

As a numerical example of how trading affects the exchange rate, consider the exchange

pair X/Y , and the liquidity pools x = 1, 000 and y = 90. Here the invariant, k, is equal to

14On Uniswap there is also a transaction fee of 0.3% to incentivize liquidity provision that is omitted in

Equations 2 and 6.
15The constant product function in Equation 2, k = (x − δx) · (y + δy), can be generalized to f(k) =

f(x− δx, y+ δy), where f(·) is an arbitrary pricing function. For an overview of automated market makers

and pricing functions see Xu et al. (2021).

12

1, 000 · 90 = 90, 000 and the marginal exchange rate is x
y = 1,000

90 = 11.11. A trader wants

to buy 100 of X, and according to the constant product algorithm they have to pay,

δy =
k

x− δx
− y =

90, 000

1, 000− 100
− 90 = 10 (5)

of Y at the exchange rate δx
δy

= 100
10 = 10, which is less favourable than at the marginal

exchange rate.16 After the trade, the invariant, k, is still equal to 900 · 100 = 90, 000, the

liquidity pools have changed to x = 900 and y = 100, and the new marginal exchange rate

is x
y = 900

100 = 9. If another trader, at this point, also wants to buy 100 of X, they have to

pay,

δy =
k

x− δx
− y =

90, 000

900− 100
− 100 = 12.5 (6)

of Y , which is more than the first trader, at the exchange rate δx
δy

= 100
12.5 = 8. After the

trade, the invariant, k, is still equal to 800·112.5 = 90, 000, the liquidity pools have changed

to x = 800 and y = 112.5, and the new marginal exchange rate is x
y = 800

112.5 = 7.11. In

the example, both traders affect the exchange rate as they alter the liquidity pools, and

the second trader pay a higher price, compared to the first trader, for the same amount

of currency X.

2.2.2 Crypto assets traded on decentralized exchanges

Crypto assets are digital assets secured by blockchain technology. The most common

crypto assets are so-called cryptocurrencies. Ether is Ethereum’s native currency, but there

are thousands of other currencies within the Ethereum ecosystem. These currencies are

deployed as smart contracts on the blockchain. The ERC-20 Token Standard (Ethereum

Request for Comment 20) (Vogelsteller and Buterin, 2015) is a technical standard that

allow users to create smart contracts that are fungible, i.e., interchangeable, tokens on the

Ethereum blockchain. The ERC-20 standard specify an interface for how to transfer and

use the currency. The standard allows developers to create decentralized applications that

can interact universally with every currency of that standard. The ERC-20 currencies can

be traded on decentralized exchanges running on the Ethereum blockchain. Two examples

of ERC-20 tokens are the two largest cryptocurrencies in market cap after bitcoin and

ether, the stablecoins Tether (USDT) and USD Coin (USDC), which are both pegged to

the US dollar.

16For simplicity the example disregards trading costs.

13

2.3 Arbitrage on decentralized exchanges

Arbitrageurs are part of the price-discovery process of automated market makers, helping

adjust the liquidity pools to reflect the no-arbitrage price. Arbitrage opportunities arise

when trading has sufficiently changed the price in one market (or asset) but not in another.

This can happen through price slippage in one large trade, or several consecutive smaller

trades. Deviations from the no-arbitrage price can occur between exchanges in the same

currency pair as cross-exchange arbitrage, within an exchange in different currency pairs

as triangular arbitrage, or any combination of these.

There are two ways arbitrageurs can find profitable opportunities: (i) Observe the

exchange rates in the current global state defined by the previously mined block Bb and try

to cut in front of all other market participants to capture this opportunity in block Bb+1.

(ii) Monitor the mempool to detect unconfirmed pending transactions that will affect the

market price such that arbitrage opportunities occur and try to cut in front of all other

market participant in capturing these opportunities (Daian et al., 2019). Arbitrageurs can

predict exchange rate changes from pending transactions as all information about these

transactions is public. Both the former and the latter methods are done in a process called

back-running, where the arbitrageur adjusts the transaction fee such that their arbitrage

transaction is executed directly after the transaction causing the price impact.

If the arbitrage opportunity is already manifested in the current state, arbitrageurs

aim to have as high a transaction position as possible in the next block. Thus, paying

up to the arbitrage profit itself in transaction fee to acquire an early execution in the

coming block. If the arbitrage opportunity is pending in the mempool there are two ways

arbitrageurs can capture the potential profits. First, the arbitrageurs can back-run the

transaction by carefully choosing the transaction cost such that the probability of the

arbitrage transaction being executed directly after the price-changing transaction is high.

Alternatively, the arbitrageurs can “take” the transaction in the mempool, sign their own

arbitrage transaction, and send these together directly to miners using private relays. The

miners are incentivized to accept these bundles if the fees are sufficiently high. This process

guarantees that the transactions are executed in the right order, given that the miner wins

the race to confirm the block. Arbitrageurs reputedly use private relays to increase the

probability of having their transactions executed directly after a large transaction off-sets

the exchange rate, although the exact frequency of this practice is unknown.

14

2.3.1 Arbitrage atomicity

One significant difference between arbitrage trading on decentralized exchanges and tra-

ditional exchanges concerns the risks involved. On traditional exchanges, an arbitrage

opportunity can generally only be capitalized on by submitting multiple trades. In this

situation, there is a risk that the market moves in the opposite direction and the trader

has to sell the position at a loss. Noise traders have been shown to create unpredictable

risks that reduce the attractiveness of arbitrage (DeLong et al., 1990).

On the Ethereum blockchain, all legs of an arbitrage strategy can be included in the

same transaction in which case no other transaction can interrupt the chain of trades.

Furthermore, since Ethereum transactions are programmable, arbitrageurs can condition

their transactions such that the transactions are cancelled if they are not profitable.17 In

principle, arbitrage on Ethereum is truly risk-free with the caveat that arbitrageurs still

have to pay gas fees for cancelled transactions.

2.3.2 Arbitrageurs’ profits and costs

The arbitrageurs have to pay two types of fees: A trading fee to the decentralized ex-

change, and a fee to the Ethereum network for processing the transaction. The trading

fee is typically 0.03% on decentralized exchanges and goes to the liquidity providers for

providing assets to the liquidity pools. Additionally, arbitrageurs have to pay gas fees to

the Ethereum network to incentivize miners to process the transactions. Arbitrageurs us-

ing private relays can pay network fees to the miners either by direct payments or through

regular gas payments.18

3 Primary transaction data

I set up and sync an Ethereum archive node (Erigon Team, 2022), which downloads

the entire history of the blockchain. The node contains all transactions on the Ethereum

network since its inception on the 30th of June 2015 and onwards. Trueblocks (TrueBlocks

Team, 2022) is used to build an index of all transactions such that they can be filtered on

interactions with decentralized exchanges.

A transaction-level data set is sourced directly from the archive node, consisting of

every transaction interacting with the decentralized exchange Uniswap between 29th of

July 2020 and 17th of February 2022. 37,856,529 transactions across 63,168 trading pairs,

17This can be done with a simple condition asserting that the end balance need to be greater than or

equal to the start balance.
18More about this in Section 3.1.3.

15

and 84 decentralized exchanges are collected.19 Thus, each transaction in the dataset

has one or more interactions with Uniswap, without restricting any further interactions

with additional smart contracts, such as other decentralized exchanges. There are three

different software versions of Uniswap. In this paper Uniswap version 2 is used since,

during the sample period, it is by far the largest decentralized exchange on the Ethereum

blockchain.

3.1 Transaction classification

3.1.1 Overview of the data

Uniswap allows for three main user operations: Trading, adding liquidity, and removing

liquidity. From the 37,856,529 transactions interacting with the Uniswap smart contracts,

71% concern regular trading where at least one currency is exchanged for another. Of

these, 43% are simple trades, where only one currency is exchanged for another. Fur-

thermore, 23% of the transactions are liquidity provisions, depositing assets to liquidity

pools, and 1% of the transactions are liquidity withdrawals. This is consistent with previ-

ous research, finding that liquidity providers do not frequently move their assets between

liquidity pools (Heimbach, Wang, and Wattenhofer, 2021). Lastly, 1% of the transac-

tions give the Uniswap smart contracts approval for spending user funds, which is an

industry standard for decentralized exchanges and necessary prior to any trading. Thus,

approximately 96% of the transactions in the dataset perform standard operations of a

decentralized exchange. 4% of the transactions are uncategorized and are possibly com-

binations of the above operations, or interactions with additional smart contracts on the

Ethereum blockchain.

3.1.2 Detecting completed arbitrage transactions

To study price efficiency, I focus on two types of pure atomic arbitrages: Cross-exchange

arbitrage and triangular arbitrage. In addition, combinations of the strategies are also

included in the analysis. Cross-exchange arbitrages trade on price differences between two

or more exchanges. Triangular arbitrage capitalize on price deviations between three or

more exchange pairs within the same exchange.20 The cross-exchange arbitrages all include

Uniswap as one of the exchanges, and the triangular arbitrages all occur on Uniswap.

From the decentralized exchange dataset 231,645 completed cross-exchange and tri-

angular arbitrage transactions with associated metadata are extracted. The arbitrage

19The transactions are collected from the Ethereum Mainnet network and the dataset includes all de-

centralized exchanges that use the same application binary interface as Uniswap version 2.
20Triangular arbitrage with more than 3 legs is sometimes called cyclic arbitrage.

16

transactions span the same time period as the full dataset, 29th of July 2020 through

17th of February 2022, trade on 82 decentralized exchanges, and across 4,663 cryptocur-

rency trading pairs. The transactions are publicly recorded on the Ethereum blockchain

and for each arbitrage observation the following metadata are collected: Execution time,

block, position in block, arbitrageurs’ address, trading cost, number of trades, volume

of first trade, profit, currency pairs, and decentralized exchanges used. The arbitrage

transactions must satisfy the following criteria:

1. Two or more trades need to form a closed loop, such that the output amount and

currency of one trade is equal to the input amount and currency of the next trade.

2. All trades must occur within one atomic Ethereum transaction.

3. The transaction cannot perform or be connected to any other operation on the

blockchain.

4. The transaction must yield a positive profit.

5. The base currency must be Ether.

6. A fee must be paid to the miner.

The classification criteria capture a set of clean arbitrage transactions, where the arbi-

trageurs’ risk is bounded by the transaction cost payed to validators for trying to execute

the transaction. Criterion 1 assures that the transaction is an arbitrage trade. Any num-

ber of trades can take place between any number of exchanges. This covers, for example,

cross-exchange arbitrage transactions with two or more trades between Uniswap and any

other decentralized exchanges, as well as triangular arbitrages on Uniswap. Criterion 2

ensures that all trades in the transaction are done by the same agent and that the arbi-

trageurs act rationally by minimizing their risks and costs by executing all trades in one

atomic transaction. Criterion 3 ensures that the transaction is a pure arbitrage transac-

tion, meaning that it is not part of any other trading strategy. This criterion removes

transactions included in sandwich bundles, flash loans, or any other blockchain operation

not part of a pure arbitrage operation.21 Criterion 4 removes arbitrage transactions with

negative profits. Since it is possible for an arbitrage transaction to be programmed such

that it is cancelled if it is not profitable, transactions with negative profits are most likely

due to operational mistakes. Or, the transactions are not aimed at capturing arbitrages,

but have some other use case. Wang et al. (2021b) find that approximately 1% of cyclic

21For a detailed description see Appendix D.

17

Table 1: Descriptive statistics of arbitrage transactions. N = 231,645. All currency units

are in USD.

Exchanges Trades Position Volume Cost Profit Net profit

mean 1.51 2.90 77.46 6,573.19 71.88 129.31 57.43

median 1.00 3.00 66.00 2,461.29 39.25 55.16 7.72

std 0.53 0.70 71.32 26,037.69 377.53 789.99 663.89

min 1.00 2.00 0.00 0.00 0.00 0.00 -3,936.86

25% 1.00 2.00 8.00 993.04 20.04 27.12 2.13

50% 1.00 3.00 66.00 2,461.29 39.25 55.16 7.72

75% 2.00 3.00 125.00 5,906.07 73.02 109.90 27.33

max 4.00 8.00 790.00 3,311,271.21 49,655.44 167,860.28 167,818.47

sum 358,720.00 689,714.00 18,439,829.00 1,564,878,324.27 17,113,326.74 30,784,514.82 13,671,188.08

arbitrage transactions have negative profits plausibly due to participation in other decen-

tralized finance projects, such as increasing trading volume. Criterion 5 does not restrict

the sample in any essential way, but enables straightforward comparison and profit calcu-

lations across transactions. The vast majority of arbitrage transaction fulfill this criterion

as arbitrageurs pay transactions costs in ether. Lastly, Criterion 6 ensures that the arbi-

trageur paid a fee to the miner, either by regular gas payment, or a direct transfer. This

removes arbitrages that rely on other transactions for gas payments.

Table 1 shows descriptive statistics for the arbitrage transactions. Approximately half

of the transactions are triangular arbitrages indicated by the number of exchanges used and

the number of trades per transaction. Cross-exchange arbitrages occur on 2 to 4 exchanges.

The maximum number of trades for an arbitrage is 8, but few transactions have more

than 3. One reason for this is likely the computational burden to find more complicated

arbitrage opportunities.22 Another reason is the larger transaction costs, which increase in

two ways: A larger network fee due to a more complex Ethereum transaction, and higher

exchange fees due to more trades. The volume of the arbitrage transactions is calculated

by the volume of the first trade in each arbitrage, not adding the volume of later trades in

the transaction. In this way it is possible to think about the opportunity cost and required

capital for the arbitrageur. Most arbitrages require a capital up to $6,000, although the

maximum is over $3 million. The distribution of the transaction costs reveal that the

mean is substantial relative to the profits and the standard deviation is high. Further, the

22In order for an arbitrageur to find an opportunity, they must identify it within the average Ethereum

block time of 14 seconds. Zhou et al. (2021a) estimate that given a 3 seconds network delay their algorithm

must detect arbitrage within a 10.5 seconds window. The authors show that their algorithm exceeds the

time limit when trying to exploit more than 6 arbitrage cycles.

18

minimum transaction cost is rounded to 0, although it is non-zero.

After Uniswap, Sushiswap is the largest decentralized exchange. Approximately 95%

of the sampled arbitrages use these two exchanges (all of them use Uniswap). Further

transactions, using CRO Defi Swap, Shibaswap, and Linkswap amounts to 4% of the

arbitrageurs’ trading. The stablecoins USDT (Tether), USDC, and DAI traded against

Ether are the most traded currency pairs on Uniswap, and also generally the most liquid

trading pairs.

Figure 2: 30-day moving average of gas costs and profits from successful arbitrages.

Unlike other financial markets, where high frequency traders compete primarily with

speed, arbitrageurs on decentralized markets also compete with willingness to pay for the

arbitrage opportunity, as miners prioritize high-paying transactions. Figure 2 shows the

30-day moving average of successful arbitrage transactions’ costs and profits. The dashed

area, above the cost curve and below the profits curve, is the average net profits. The

net profits are fairly uniformly distributed over the first half of sample period, with the

exception of the beginning where Sushiswap and CRO Swap were released. In the second

half of the sample, competition seems to have increased as costs increase and net profits

looks slightly lower. Important events such as the introduction of Flashbots’ private relay

and the decentralized exchange routing protocol 1Inch do not, visually, seem to have any

significant effect on arbitrage profits.

3.1.3 Approximating arbitrage transaction costs

Transactions that are sent to miners through the mempool pay transaction costs by a

regular gas payment. Arbitrage transactions that use private relays have the option to pay

miners directly in addition to the standard gas payment. When estimating arbitrageurs’

19

total costs it is important to consider both alternatives. Regular gas payments are easy

to observe as they are logged in the transaction data on the blockchain.23 However, direct

payments to the miner need to be considered separately. Specifically, any transfer to the

miner’s address needs to be considered. Miners treat direct payments and regular gas

payments in the same way, and position transactions that pay the most first in the blocks.

The trading fees that the arbitrageurs pay to the decentralized exchanges do not need

to be estimated as they are automatically accounted for in the trade. The total cost for

each arbitrage transaction is calculated by adding the regular gas cost and any direct

payment. 31 arbitrage transactions are removed from the sample data as they have 0

total cost after the calculation. These transactions probably pay the miners in some other

way, and are therefore not considered simple arbitrages in this paper.

The total cost for successful arbitrages can be precisely calculated. However, there

is a hidden cost as arbitrageurs do not always succeed in capturing arbitrage. Failed

arbitrage transactions still pay a transaction fee to the miner for the attempt to execute the

transaction. Assuming that failed transactions from arbitrageurs are attempted arbitrages,

Wang et al. (2021b) find that most arbitrageurs have a success rate of over 90%.

3.1.4 Arbitrage transactions’ position in blocks

The number of transactions in an Ethereum block varies with the complexity of the trans-

actions and current network demand. The average number of transactions per block in

the arbitrage dataset is 204. The distribution of the arbitrage transactions’ positions in

the blocks is visualized in Figure 3.

Figure 3: Distribution of arbitrage transactions’ block position for the full sample, July

2020 to February 2022. Transactions with block position 0 is executed first in each block.

23See Appendix C for a detailed description.

20

Figure 3 gives insight into what information the arbitrageurs use, what previous trans-

action might have created the arbitrage opportunity, and if the arbitrageurs might use

private relays to send their transactions to the miners. The figure shows that many ar-

bitrage transactions are placed in the beginning of the blocks, with transaction positions

0 to 10. 4.47% of the arbitrage transactions are at block position 0, and thus the first

transactions to be executed in the blocks. This indicates that these transactions capitalize

on arbitrage opportunities created in previous blocks, as no other transaction is executed

before the arbitrage in the current block. Other arbitrage transactions have positions in

the middle or end of the blocks, suggesting that these transactions profit from arbitrage

opportunities within the same block. However, arbitrageurs that use private relays do not

need to wait for an exchange rate changing transaction to be executed and try to back-run

it. Instead, arbitrageurs can bundle pending exchange rate changing transactions together

with their arbitrage transactions and pay a high amount of transaction fee to the miner to

execute these transaction together. Thus, it is possible that privately relayed transactions

tend to have a higher block position, such that the arbitrage opportunity is captured early

in the block.

Figures 4a to 4d show the distributions of the arbitrage transactions positions in the

blocks over 5-month subsamples. Interestingly, in the beginning of the sample period ar-

bitrage transactions tend to be positioned in the middle of the blocks, and in the later

part of the sample period the transactions tend to be positioned in the beginning of the

blocks. One possible explanation for this is the increased amount of privately relayed arbi-

trage transactions in the end of the sample, which would be consistent with the seemingly

increasing gas costs in the end of the sample in Figure 2.

Figure 5 shows a lower bound of privately relayed arbitrage transactions over the sam-

ple period. The percentages are calculated based on the number of arbitrage transactions

that use a direct payment to the miner, which is only possible through private relays.

This however, creates a lower bound for the number of privately relayed transactions as

the arbitrageurs do not have to pay miners directly, but can instead do so through regular

gas payments. The first privately relayed arbitrage transactions can be observed around

the launch of Flashbots’ private relay client MEV Geth in December 2020, and from then

on the percentage of private arbitrage transactions steadily increase. However, after July

2021, there is a declining pattern of arbitrage transactions that pay the miners directly. It

is, however, unclear if the percentage of privately relayed arbitrage transactions also de-

cline during this time period, or whether the arbitrageurs changed their primary payment

method.

21

(a) July 2020 to November 2020. (b) December 2020 to April 2021.

(c) May 2021 to September 2021. (d) October 2021 to February 2022.

Figure 4: Distribution of arbitrage transactions’ block position. Transactions with block

position 0 is executed first in each block.

4 Arbitrage analysis

To investigate the occurrence and subsequent elimination of arbitrage opportunities the

empirical methodology is designed in three parts. (i) A counterfactual simulation is de-

signed, where arbitrage transactions are re-executed in different blocks and positions. By

simulating another, hypothetical, state of the blockchain it is possible to analyze how the

arbitrage transactions would have behaved under different circumstances, and draw con-

clusions from their dependence on previous trading. (ii) A predictive model is designed

to estimate how previous trading predicts arbitrages, using the realized arbitrage transac-

tions and a randomly sampled control group of non-arbitrage transactions. (iii) Arbitrage

profits are regressed on previous exchange rate changes to understand how profits differ de-

pending on how far in the past the arbitrage-triggering price changes occurred. However,

before turning to the full formal analysis, a snapshot of within-block price differences

between Uniswap and Sushiswap is visualized together with some completed arbitrage

transactions.

4.1 Snapshot of arbitrages

The Ethereum state is updated with each Ethereum transaction and thus multiple times

within each block. Therefore, exchange rates on decentralized exchanges change within

each block and prices can be measured on a transaction-level basis. Figure 6 shows the

difference in the ETH-USDT (ether and Tether stablecoin) exchange rate between Uniswap

22

Figure 5: Lower bound of privately relayed arbitrage transactions for each month in the

sample.

and Sushiswap. The dashed bars show the end-of-block exchange rate differences between

the two exchanges and the solid bars show the maximum differences within the blocks.

The snapshot shows approximately 1 hour of trading on the 23 of May 2021. The day was

chosen arbitrarily, and the time was chosen to show multiple arbitrage transactions within

a short time interval. The maximum within-block price differences include the end-of-

block price difference: The bars have the same height if the end-of-block price difference is

the largest price difference in that block. If the bars have different heights there has been

at least one occasion within that block where a larger price discrepancy has occurred and

then disappeared.

At several times during the snapshot, the end-of-block price difference is lower than

the within-block price difference. That is, within the block, the price difference has been

greater but subsequently corrected before the block ends. In the figure, pure arbitrage

transactions are marked with stars and show how within-block price anomalies are regu-

larly arbitraged away. Unsurprisingly, there are also large price differences without any

observed classified arbitrage transaction correcting the price. The classification method in

this paper focus on pure arbitrage transactions, and prices may adjust due to other types

of trades as well.

23

Figure 6: End-of-block price differences and maximum within-block price differences for

the exchange pair ETH-USDT (ether and Tether stablecoin) on the decentralized ex-

changes Uniswap and Sushiswap. The data are taken from a snapshot of blocks from the

23 of May 2021.

Table 2: Descriptive statistics of arbitrage transactions between 2021-05-23 16:30:52 and

2021-05-23 17:14:57. All currency units are in USD. Volume is calcuated as the amount

traded in the first leg of the arbitrage.

Time Position Arbitrageur Volume Cost Net profit

2021-05-23 16:30:52 6 0x0000000000007f150bd6f54c40a34d7c3d5e9f56 174,988.73 149.51 476.96

2021-05-23 16:38:38 96 0x0000000089341e263b85d84a0eea39f47c37a9d2 441,000.00 188.03 8,315.18

2021-05-23 16:46:02 10 0x3700006fbcde59a8b3af2c134d00e9530000e379 318,253.28 417.57 1,275.97

2021-05-23 16:46:55 83 0x3700006fbcde59a8b3af2c134d00e9530000e379 161,427.18 199.12 239.77

2021-05-23 16:57:47 94 0x0000000000007f150bd6f54c40a34d7c3d5e9f56 11,034.15 158.67 32.03

2021-05-23 16:59:59 54 0xf5b4f13bdbe12709bd3ea280ebf4b936e99b20f2 253,778.07 233.99 1,114.21

2021-05-23 17:05:39 14 0x3700006fbcde59a8b3af2c134d00e9530000e379 337,209.53 397.11 1,605.89

2021-05-23 17:11:07 153 0x3700006fbcde59a8b3af2c134d00e9530000e379 143,005.49 180.07 179.44

2021-05-23 17:14:57 148 0x3700006fbcde59a8b3af2c134d00e9530000e379 170,750.44 187.94 327.63

Table 2 shows some statistics for the arbitrage transactions in Figure 6.24 The block

24One arbitrageur address, 0x...e379, executes 5 out of the 9 arbitrages in the snapshot. In fact,

this arbitrageur captures approximately 20% of the profits in the full arbitrage dataset. All arbitrageur

addresses in Table 2, except 0x...20f2, are present on Etherscan’s list of 260 addresses that are heavily

involved with miner extractable value such as arbitrage trading (https://etherscan.io/accounts/label/

mev-bot). The competition for arbitrages is said to be increasing and solo arbitrageurs are getting out-

competed by teams, both from traditional finance and the cryptocurrency industry. Rumor has it that

around 20 teams are dominating the industry (Worsley, 2022). This claim is in line with the data in this

paper, where 840 unique arbitrageur addresses are identified, but 76% of the net profits are captured by

20 arbitrage addresses.

24

https://etherscan.io/accounts/label/mev-bot
https://etherscan.io/accounts/label/mev-bot

positions of the arbitrage transactions reveal that they most likely have back-run pending

transactions and not captured arbitrage from previous blocks. The reason being that in

order to compete in capturing arbitrage from the previous block the arbitrageurs would

like to execute their transactions as early as possible in the block. Looking closer at the

last arbitrage in Table 2, with block position 148, there is a previous transaction, with

position 146 in the same block (now shown it Table 2), that trade 51 Ether for 100,000

USDT on Sushiswap, off-setting the no-arbitrage exchange rate between the exchanges.

The arbitrage transaction capitalizes on this price discrepancy and brings the market back

to the no-arbitrage price. This scenario showcase how an arbitrage opportunity arise and

how an arbitrageur profit from the price discrepancy.

From Figure 6, it is clear that arbitrageurs act fast to capitalize on arbitrage op-

portunities and that price anomalies are often corrected within a block. This suggests

that arbitrage opportunities are highly time sensitive, appearing for brief moments within

blocks. Prices measured at the end of blocks, rather than at the transaction level, therefore

seems more likely to be arbitrage-free.

4.2 Counterfactual simulation

The computer code for each Ethereum transaction is fully transparent as it is necessary for

node operators to be able to replay every transaction on the network up until the current

state. This feature makes it possible to simulate alternative versions of the blockchain.

Transactions are defined by their accompanying transaction code and any detail in the

code can be changed, such as transaction cost and block position. This gives a unique

opportunity to study counterfactual states of the world, in a way not possible in any

traditional market. Transactions can be altered and re-ordered in any way possible and

the counterfactual results can be analyzed.25 By re-executing the arbitrage transactions in

a different order in the blockchain, it is possible to analyze if the transactions would have

been profitable under different circumstances. For example, if an arbitrage transaction is

re-executed where the price anomaly does not exist, the transaction will either be cancelled

or show negative profits.

A counterfactual simulation is designed to re-execute each arbitrage transaction as the

first transaction in their own block or in previous blocks to determine at which point it

is no longer profitable. The hypothesis is that if the arbitrage transactions are primarily

capitalizing on exchange rate differences created in their own blocks, then the transactions

would no longer be profitable if executed as the first transaction in their own blocks, i.e.,

the arbitrage transactions are placed before the price anomalies occur. Similarly, if an

25Appendix C gives an overview of the data of an Ethereum transaction.

25

arbitrage transaction profits from exchange rate changes in the previous block, it would

no longer be profitable if it were executed as the first transaction in the previous block.

(a) Net profits with original transaction

costs.

(b) Net profits with updated transaction

costs.

Figure 7: Counter factual simulation with 9 lags.

Figures 7a and 7b shows the percentage of arbitrages that are still profitable when

re-executed as the first transaction in their current and previous blocks.26 Figure 7a

keeps the original transaction costs of the arbitrage transactions, whereas Figure 7b uses

the transaction cost the arbitrage transaction would have payed to be in the simulated

position. By re-executing each arbitrage transaction at the beginning of its own block,

only 31% of the transactions are profitable. This suggests that a vast majority (69%)

of the arbitrage transactions profit from exchange rate changes within the same block.

The further away from its original position that the arbitrage transaction is re-executed,

the less likely it is to be profitable. When the transactions are re-executed as the first

transaction in the block that was mined 9 blocks from its original position, only 7% are

profitable. Put differently, most arbitrage opportunities are eliminated within 9 blocks.

Since a block is mined approximately every 14 seconds, it takes roughly 2.5 minutes for

all arbitrage to disappear. However, after an average of 14 seconds the majority of the

arbitrage profits are made.

The counterfactual simulation shows that arbitrage transactions are very sensitive to

the order of executions. Arbitrageurs need to act fast and precise when back-running

pending transactions from the mempool. The arbitrageurs have to identify the arbitrage

opportunity within the average block window of 14 seconds, and carefully place their

transaction after the exchange rate changing trade, either by adjusting the transaction

cost to pay marginally less than the pending trade or by submitting the two transactions

26As a robustness check, the simulations are also run excluding the arbitrage transactions at position 0.

See Appendix B.

26

in a private transaction bundle.

4.3 Predicting arbitrages by prior trading

On decentralized exchanges the marginal exchange rate between two assets, X and Y ,

is determined by the fraction of their liquidity pools, x
y . Arbitrages are solely created

by agents trading against the liquidity pools such that the no-arbitrage exchange rate is

off-set. Large exchange rate changes should therefore signal future arbitrage transactions.

The counterfactual simulation shows that arbitrage transaction are sensitive to timing, but

that some arbitrage opportunities exist as far back as 9 blocks from the original arbitrage.

To empirically evaluate how far back exchange rate changes affect arbitrage transactions, I

conduct a predictive study in which imbalances in the liquidity pools are used to estimate

whether or not an arbitrage transaction is likely to occur. The exercise also investigates

the dynamics of arbitrages in the sense that it indicates how long-lived arbitrages are by

answering: How far back into the past do I have to look for price imbalances to predict

current arbitrage?

In the predictive exercise, n = 231, 645 arbitrage transactions are studied. To dis-

criminate these arbitrage transactions from regular trading, a random control group is

constructed from the original dataset. Specifically, the control group consists of n ran-

domly sampled non-arbitrage transactions. These transactions are sampled uniformly

without replacement, under the criteria that they perform one trade on Uniswap. The

total sample size is thus equal to 2n = 463, 290 transactions. A transaction tbi,pi is as-

signed Ai = 1 if it is an arbitrage transaction, and Ai = 0 if the transaction belongs to

the control group. Transaction tbi,pi , i = 1, . . . , 2n, exists in block bi at position pi. As

the number of positions differ in each block, block b has Pb positions.

As price changes are fully deterministic on automated market makers, there is a direct

mapping from trading to changes in price. This makes it possible to calculate the exact

price impact of each transaction. The price impact of a transaction tb,p on the exchange

rate x
y , is defined by the log difference in the liquidity pools x and y,

∆b,p(x, y) = log

(
xb,p−1

yb,p−1

)
− log

(
xb,p
yb,p

)
. (7)

Here
xb,p−1

yb,p−1
is the exchange rate before transaction tb,p is executed and

xb,p

yb,p
it the exchange

rate after transaction tb,p is executed. To study how a previous transaction tb,p affects

tbi,pi , the maximum absolute price impact of tb,p related to tbi,pi is defined as,

27

ϕb,p(i) = max
(x, y) such that x, y are traded in tbi,pi

|∆b,p(x, y)| . (8)

Thus, Equation 8 describes the maximum impact on the exchange rates traded in tbi,pi

by a prior transaction tb,p. Although, 43% of tb,p is only trading in one currency pair

(see Section 3.1.1), transaction tbi,pi can trade in several exchange rates, often across

several exchanges. Here, only the maximum absolute exchange rate change is captured by

ϕb,p(i). This is a somewhat conservative measure of how trading in transaction tb,p affects

transaction i, and as a robustness check the sum is also calculated.

In order to predict if transaction tbi,pi is an arbitrage or not, the price impacts from

transactions executed prior to tbi,pi are calculated. The maximum price impact of the

transaction immediately prior to tbi,pi , i.e., tbi,pi−1, is defined as,

PrevTransi = ϕbi,pi−1(i). (9)

The relationship between PrevTransi and transaction tbi,pi indicates to what degree the

transaction immediately prior to tbi,pi helps to predict if it is an arbitrage. Arbitrageurs

can profit from a large ϕbi,pi−1(i) by identifying tbi,pi−1 when it is pending in the mempool,

calculate its exact price impact given the current state, and either back-run it through

a private transaction bundle or a regular public transaction. If done successfully, this is

the absolute fastest way price anomalies can be arbitraged away, as there are no other

transaction between tbi,pi−1 and tbi,pi . In this situation the exchange rate is back at the

no-arbitrage price within the next transaction.

Furthermore, to measure the magnitude of the changes in the exchange rates in the

same block as transaction tbi,pi , the maximum price impact of all prior transactions in the

block, excluding transaction tbi,pi−1, is defined as,

SameBlocki = max{ϕbi,0(i), . . . , ϕbi,pi−2(i)}. (10)

The price impact SameBlocki describes how the exchange rate changed prior to transac-

tion tbi,pi in block bi. This relationship further describes to what extent prior trading in

the same block predicts arbitrage. For arbitrageurs to profit from a large SameBlocki,

the arbitrageur need to identify a pending transaction that will significantly affect the

exchange rate, but is not able to place the arbitrage transaction immediately after it. For

some reason there is at least one other transaction in between the exchange rate chang-

ing transaction and the arbitrage transaction. However, in terms of price efficiency, the

exchange rate will still be arbitrage-free within the block.

28

Block bi − 10

t0
t1
t2
.
.
.

tk−1

tk

.

.

.

tPbi−10

∆ price ...

Block bi − 1

t0
t1
t2
.
.
.

tj−1

tj

.

.

.

tPbi−1

∆ price

Block bi

t0
t1
.
.
.

tpi−2

tpi−1

i

.

.

.

tPbi

∆ price

∆ price

Ai = 1?

Figure 8: For each transaction in the sample data, the maximum price impact of previous

transactions is calculated in groups. The notation in the figure is simplified as the blocks

are labeled in the headings instead of as subscripts.

Although much of the arbitrage action happens within the block, the counterfactual

simulation (Section 4.2) shows that some arbitrages live across blocks. By analyzing how

far back transactions affect arbitrages, it is possible to get a complete measure of how

fast arbitrageurs are able to correct exchange rate deviations. To investigate how far

back exchange rate changes affect tbi,pi , the maximum change in the exchange rates from

transactions in previous blocks bi − s, s = 1, . . . , 10 is measured as,

PrevBlocki,s = max{ϕbi−s,0(i), . . . , ϕbi−s,Pbs
(i)}. (11)

The relation between PrevBlocki,s and transaction tbi,pi , describes how far back exchange

rate changes affect arbitrages. One reason for why arbitrageurs are not always able to

back-run arbitrage creating transactions is that some blocks are mined faster than aver-

age. Although, arbitrageurs have on average 14 seconds to observe pending transactions,

calculate their price impacts, and take action, this is not always the case as some blocks

are mined as fast as within 1 second.

Figure 8 visually illustrates how PrevTransi, SameBlocki, and

PrevBlocki,1, . . . , P revBlocki,10 are calculated. Tables 3 and 4 show the distribu-

tions of PrevTransi, SameBlocki, and PrevBlocki,1, . . . , P revBlocki,4 for the arbitrage

transactions, Ai = 1, and the non-arbitrage control group, Ai = 0, respectively. The

transactions just prior to the arbitrage transactions affect the exchange rate the most

on average, with a 3% impact. 27% of the PrevTransi observations are non-zero

29

Table 3: Descriptives statistics of the maximum price changes by trading prior to the

arbitrage transactions. All units are in log differences multiplied by 100 to be interpreted

as percentages.

PrevTransi SameBlocki PrevBlocki,1 PrevBlocki,2 PrevBlocki,3 PrevBlocki,4

mean 3.16 0.57 2.11 1.46 0.91 0.66

median 0.00 0.00 0.00 0.00 0.00 0.00

std 56.24 7.90 37.87 37.85 30.82 20.13

min 0.00 0.00 0.00 0.00 0.00 0.00

25% 0.00 0.00 0.00 0.00 0.00 0.00

50% 0.00 0.00 0.00 0.00 0.00 0.00

75% 0.45 0.00 0.49 0.05 0.01 0.01

max 6,914.57 1,927.32 7,525.22 6,936.49 7,828.48 7,201.81

sum 735,546.11 132,226.65 491,477.84 340,514.61 211,374.69 153,207.66

% nonzero 27.01 20.37 48.38 42.26 37.35 35.43

for the arbitrages. These statistics are significantly lower for the control group, where

PrevTransi is 0.22% on average, and barely 5% are non-zero. Similarly, SameBlocki, and

PrevBlocki,1, . . . , P revBlocki,10 are all significantly higher for the arbitrages compared

to the control group.

To predict whether a transaction is an arbitrage, i.e., Ai = 1, or a regular transaction

from the non-arbitrage control group, i.e., Ai = 0, I fit a probit regression with predictors

PrevTransi, SameBlocki, and PrevBlocki,1, . . . , P revBlocki,10 on the full sample and on

5-month subsamples. The subsamples are constructed to investigate any dynamics in the

data.

The results are presented in Table 5 and show that exchange rate changes in transac-

tions up to 4 blocks prior to transaction tbi,pi , significantly predict if the transaction is an

arbitrage.27 Thus, trading up to 1 minute before a transaction helps to predict if an arbi-

trage transaction will occur. One explanation for these results are that price imbalances

build up. The price could be different between two exchanges without arbitrage being

profitable. Arbitrageurs would arbitrage away price imbalances only when it is profitable

to do so. However, the probability of a profitable price imbalance increases as trading

is pushing the exchange rate in the off-setting direction. These findings are consistent

with those of the counterfactual simulation in Section 4.2, in which some arbitrages are

profitable over blocks. Approximately 12% (5% with updated transaction costs) of the

arbitrage transactions are profitable 4 blocks back, and after which there is clear levelling

27A probit model using the summation of previous price changes without taking the absolute value is

used as a robustness check and shows similar results, see Table 7 in Section B.

30

Table 4: Descriptives statistics of the maximum price changes by trading prior to the

control transactions. All units are in log differences multiplied by 100 to be interpreted as

percentages.

PrevTransi SameBlocki PrevBlocki,1 PrevBlocki,2 PrevBlocki,3 PrevBlocki,4

mean 0.22 0.38 0.50 0.48 0.45 0.43

median 0.00 0.00 0.00 0.00 0.00 0.00

std 5.42 8.70 11.84 11.00 10.37 6.25

min 0.00 0.00 0.00 0.00 0.00 0.00

25% 0.00 0.00 0.00 0.00 0.00 0.00

50% 0.00 0.00 0.00 0.00 0.00 0.00

75% 0.00 0.00 0.00 0.00 0.00 0.00

max 1,749.97 4,143.30 3,425.05 2,901.43 4,715.84 2,462.47

sum 68,607.19 116,404.43 151,211.56 146,227.55 138,145.99 131,055.41

% nonzero 4.91 18.57 26.40 25.35 24.86 24.78

off in the fraction of profitable arbitrages.

4.4 The effect of prior trading on arbitrage profits

Due to the unique features of the Ethereum data, costs and profits can be precisely calcu-

lated for the successful arbitrage transactions. As a further step in understanding arbitrage

trading on decentralized exchanges, net profits are regressed on PrevTransi, SameBlocki,

and PrevBlocki,1, . . . , P revBlocki,10.
28 In the regression, the block times of the blocks

bi, bi−1, and bi−2 are used as control variables. The reason is that if the block bi−1 is mined

fast, arbitrageurs might not have enough time to capture the arbitrage opportunity in the

same block. If 2 consecutive blocks are mined fast, arbitrageurs might not be able to cap-

ture the profits for 2 blocks. The estimation is conducted on the sample of n = 231, 645

arbitrage transactions, as well as on 5-month subsamples.

Table 6 presents the results from the regressions. The first column displays the results

from the regression using the full sample. It shows that previous exchange rate changes

up to PrevBlocki,1 significantly affect net arbitrage profits. These results are different

from the predictive study, and indicate that arbitrageurs’ profits are generated by trading

much closer to the arbitrage than the trading that predicts the arbitrage. Furthermore,

the results show that changes in the exchange rates from transactions within the arbitrage

transaction’s block, PrevTransi and SameBlocki, strongly affect arbitrage net profits.

This holds true across all subsamples, but changes somewhat over time. Looking at the

28As a robustness check, a regression is run using the summation of the previous price changes without

taking the absolute value, see Table 9 in Appendix B.

31

Table 5: Probit: Arbitrage trades and non-arbitrage trades regressed on maximum of

previous price changes.

(1) (2) (3) (4) (5)

All
July 2020 -
Nov 2020

Dec 2020 -
April 2021

May 2021 -
Sep 2021

Oct 2021 -
Feb 2022

PrevTransi 0.0468∗∗∗ 1.607∗∗∗ 0.555∗∗∗ 0.0719∗∗∗ 0.0260∗∗∗

(0.00188) (0.0270) (0.0165) (0.00472) (0.00204)

SameBlocki 0.0526∗∗∗ 0.309∗∗∗ 0.552∗∗∗ 0.132∗∗∗ -0.0148

(0.00890) (0.0387) (0.0385) (0.0194) (0.0106)

PrevBlocki,1 0.0489∗∗∗ 0.833∗∗∗ 0.0971∗∗∗ 0.0751∗∗∗ 0.0219∗∗∗

(0.00263) (0.0324) (0.00671) (0.00620) (0.00319)

PrevBlocki,2 0.0288∗∗∗ 0.0196∗∗∗ 0.240∗∗∗ 0.0776∗∗∗ 0.0144∗∗∗

(0.00275) (0.00488) (0.0150) (0.00838) (0.00360)

PrevBlocki,3 0.0222∗∗∗ 0.0130∗ 0.0215∗∗∗ 0.121∗∗∗ 0.0154∗∗

(0.00336) (0.00604) (0.00613) (0.0152) (0.00543)

PrevBlocki,4 0.0214∗∗∗ 0.00887 0.201∗∗∗ 0.0166∗ 0.0688∗∗∗

(0.00489) (0.00647) (0.0334) (0.00757) (0.0190)

PrevBlocki,5 0.00751 -0.130∗∗∗ 0.0581 0.0000517 0.0105

(0.00766) (0.0341) (0.0339) (0.00870) (0.0197)

PrevBlocki,6 0.0185∗ -0.145∗∗∗ 0.00781 0.117∗∗∗ 0.0600∗∗∗

(0.00823) (0.0362) (0.0101) (0.0287) (0.0182)

PrevBlocki,7 -0.00395 0.00422 0.130∗∗∗ -0.000220 -0.00637

(0.00411) (0.0292) (0.0372) (0.0104) (0.00453)

PrevBlocki,8 -0.00940∗∗∗ -0.0516∗∗ -0.108∗∗∗ 0.0615∗ -0.00753∗∗

(0.00272) (0.0178) (0.0296) (0.0276) (0.00275)

PrevBlocki,9 -0.00592 -0.284∗∗∗ 0.0473 0.0332 0.000425

(0.00761) (0.0452) (0.0307) (0.0244) (0.00868)

PrevBlocki,10 0.00332 0.00221 -0.0914∗∗ 0.0501∗ 0.00559

(0.00637) (0.00686) (0.0328) (0.0222) (0.0198)

Constants 0.495∗∗∗ 0.349∗∗∗ 0.551∗∗∗ 0.607∗∗∗ 0.430∗∗∗

(0.000740) (0.00146) (0.00129) (0.00135) (0.00228)

N 463290 114701 154408 133478 47987

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

later part of the sample, May 2021 to September 2021 and October 2021 to February 2022,

only price changes in the current block, PrevTransi and SameBlocki, affect net profits.

This indicates that the decentralized exchanges have become more efficient over time and

arbitrage competition seems to have increased. In the later part of the sample it is, on

average, no longer possible to use information from the last state (block) of the blockchain

and previous states (blocks) for profitable arbitrage trading. Arbitrageurs need to observe

pending transactions in order to profit. One explanation for these results are the increased

32

Table 6: OLS estimation: Arbitrage profits and net profits regressed on maximum of

previous price changes.

(1) (2) (3) (4) (5)

All
July 2020 -
Nov 2020

Dec 2020 -
April 2021

May 2021 -
Sep 2021

Oct 2021 -
Feb 2022

PrevTransi 19.94∗∗∗ 261.3∗∗∗ 1060.5∗∗∗ 16.98∗ 6.191∗

(2.409) (20.09) (23.44) (7.102) (2.869)

SameBlocki 390.7∗∗∗ 539.0∗∗∗ 591.2∗∗∗ 446.0∗∗∗ 140.4∗∗

(20.56) (42.44) (68.14) (29.72) (44.81)

PrevBlocki,1 10.01∗∗ 515.3∗∗∗ 20.95∗ 14.56 2.952

(3.583) (30.90) (9.105) (9.309) (4.850)

PrevBlocki,2 4.265 -1.533 92.91∗∗∗ 14.54 -0.865

(3.576) (3.456) (21.02) (11.77) (5.150)

PrevBlocki,3 0.475 0.952 3.033 -3.902 -1.669

(4.504) (4.316) (8.317) (23.04) (8.230)

PrevBlocki,4 5.217 2.407 10.86 4.066 9.475

(6.758) (4.613) (51.09) (12.45) (31.57)

PrevBlocki,5 105.1∗∗∗ 24.17 756.5∗∗∗ -23.15 42.94

(20.29) (43.36) (63.19) (34.17) (37.59)

PrevBlocki,6 13.75 12.12 -35.77 8.605 23.27

(15.19) (34.28) (22.69) (47.57) (30.71)

PrevBlocki,7 8.867 -31.62 83.56 -9.408 -7.213

(15.69) (25.86) (54.89) (33.86) (24.49)

PrevBlocki,8 53.28∗∗ 46.15 265.5∗∗∗ 23.88 11.72

(18.21) (53.66) (67.82) (43.58) (24.60)

PrevBlocki,9 10.69 106.4∗ -81.49 61.18 2.110

(10.82) (52.35) (70.12) (44.51) (13.10)

PrevBlocki,10 5.085 -0.0608 -85.25 -0.235 4.328

(8.725) (4.866) (67.25) (33.73) (40.58)
SameBlocki
Block time 0.196 0.147 0.373∗ -0.0590 -0.133

(0.108) (0.133) (0.184) (0.198) (0.355)
PrevBlocki,1
Block time 0.234∗ 0.0810 -0.220 0.769∗∗∗ -0.0689

(0.109) (0.131) (0.181) (0.202) (0.394)
PrevBlocki,2
Block time 0.0544 0.0526 0.00909 -0.130 0.678

(0.109) (0.130) (0.180) (0.203) (0.409)

Constant 45.98∗∗∗ 24.58∗∗∗ 56.55∗∗∗ 20.15∗∗∗ 57.61∗∗∗

(2.832) (3.513) (4.839) (5.239) (9.313)

N 231639 42211 86830 81754 22278

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

33

usage of private relays in the later part of the sample, which allows arbitrageurs to capture

arbitrage opportunities with a higher precision.

The atomicity of the Ethereum transaction ensures that the arbitrage risk is reduced.

On the blockchain, compared to traditional markets, arbitrageurs have the advantage to

be able to calculate the exact price changes of pending transactions, and are thus able to

precisely forecast arbitrage opportunities. Although speed is of importance, arbitrageurs

on the blockchain have an average of 14 seconds to do their calculations before the next

block is mined. These features are reflected in the empirical results that suggest that in

most cases, these 14 seconds are sufficient for the arbitrageurs to act and thus eliminate

the arbitrage before the end of the block.

Furthermore, the results have some implications for the use of exchange rates from

decentralized exchanges as reference prices on the blockchain. As Ethereum is an isolated

system, it is unable to receive external data from the “outside” world. Therefore, decen-

tralized exchanges are used for reference pricing, and smart contracts can query market

information from the exchanges on-chain. As deviations from the no-arbitrage price are

prone to be arbitraged away within the block, the end-of-block prices are likely to be

arbitrage-free and suitable as reference prices.

5 Conclusion

In this paper, I show that arbitrageurs contribute to price efficiency on decentralized ex-

changes by neutralizing price anomalies. This happens very fast, and most of the arbitrage

opportunities are created and capitalized on within the Ethereum block. These effects are

stonger in the later part of the sample, where only trading in the same block as the ar-

bitrage transaction affects its profits. Arbitrageurs in the later part of the sample have

to monitor pending transactions in order to profit. The results speaks to an increased

arbitrage competition over time. The speed at which price anomalies are arbitraged away

implies that end-of-block prices are likely to be arbitrage-free. This is important as traders

place orders based on the price from the previous block, and other on-chain applications

use these prices as reference prices.

The results show that arbitrages are created by trading that off-sets the no-arbitrage

price. A natural question arises: Do arbitrage opportunities need to occur in the first

place? One way around a large price impact is to split an order into multiple smaller

orders across multiple exchanges within the same transaction. The trades could be routed

over several exchanges and exchange pairs such that no arbitrage opportunity arises. The

trade-off for this kind of order routing would be between the expected price slippage and

34

the increased transaction costs for splitting the trades.

35

References

Adams, Hayden, Noah Zinsmeister, and Dan Robinson (2020). Uniswap v2 core. Tech. rep.

Tech. rep., Uniswap (cit. on pp. 3, 11).

Adams, Hayden, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robinson (2021).

Uniswap v3 core. Tech. rep. Tech. rep., Uniswap (cit. on p. 11).

Alexander, C. and M. Dakos (2020). “A critical investigation of cryptocurrency data and

analysis”. In: Quantitative Finance 20.2, pp. 173–188. doi: 10.1080/14697688.2019.

1641347. eprint: https://doi.org/10.1080/14697688.2019.1641347. url: https:

//doi.org/10.1080/14697688.2019.1641347 (cit. on p. 3).

Angeris, Guillermo, Hsien-Tang Kao, Rei Chiang, Charlie Noyes, and Tarun Chitra (2021).

An analysis of Uniswap markets. arXiv: 1911.03380 [q-fin.TR] (cit. on p. 11).

Back, Adam (2002). Hashcash - A Denial of Service Counter-Measure. White paper. url:

http://www.hashcash.org/papers/hashcash.pdf (cit. on p. 6).

Bank for International Settlements (June 2022). Miners as intermediaries: extractable

value and market manipulation in crypto and DeFi. Tech. rep. url: https://www.

bis.org/publ/bisbull58.htm (cit. on p. 10).

Berg, Henry and Todd A Proebsting (2009). “Hanson’s automated market maker”. In:

The Journal of Prediction Markets 3.1, pp. 45–59 (cit. on p. 11).

Berg, Jan Arvid, Robin Fritsch, Lioba Heimbach, and Roger Wattenhofer (2022). An

Empirical Study of Market Inefficiencies in Uniswap and SushiSwap. doi: 10.48550/

ARXIV.2203.07774. url: https://arxiv.org/abs/2203.07774 (cit. on p. 3).

Buterin, Vitalik (2013). A Next-Generation Smart Contract and Decentralized Application

Platform. White paper. url: https://ethereum.org/en/whitepaper/ (cit. on p. 6).

Cartea, Álvaro, Fayçal Drissi, and Marcello Monga (June 2022). “Decentralised Finance

and Automated Market Making: Execution and Speculation”. In: SSRN Electronic

Journal. doi: https://dx.doi.org/10.2139/ssrn.4144743 (cit. on p. 12).

Chaboud, Alain P., Benjamin Chiquoine, Erik Hjalmarsson, and Clara Vega (2014). “Rise

of the Machines: Algorithmic Trading in the Foreign Exchange Market”. In: The Jour-

nal of Finance 69.5, pp. 2045–2084. issn: 00221082, 15406261. url: http://www.

jstor.org/stable/43612951 (visited on 10/07/2022) (cit. on p. 4).

Cong, Lin, Xi Li, Ke Tang, and Yang Yang (2019). “Crypto Wash Trading”. In: SSRN

Electronic Journal. issn: 1556-5068. doi: 10.2139/ssrn.3530220. url: http://dx.

doi.org/10.2139/ssrn.3530220 (cit. on p. 3).

Daian, Philip, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz

Breidenbach, and Ari Juels (2019). Flash Boys 2.0: Frontrunning, Transaction Re-

36

https://doi.org/10.1080/14697688.2019.1641347
https://doi.org/10.1080/14697688.2019.1641347
https://doi.org/10.1080/14697688.2019.1641347
https://doi.org/10.1080/14697688.2019.1641347
https://doi.org/10.1080/14697688.2019.1641347
https://arxiv.org/abs/1911.03380
http://www.hashcash.org/papers/hashcash.pdf
https://www.bis.org/publ/bisbull58.htm
https://www.bis.org/publ/bisbull58.htm
https://doi.org/10.48550/ARXIV.2203.07774
https://doi.org/10.48550/ARXIV.2203.07774
https://arxiv.org/abs/2203.07774
https://ethereum.org/en/whitepaper/
https://doi.org/https://dx.doi.org/10.2139/ssrn.4144743
http://www.jstor.org/stable/43612951
http://www.jstor.org/stable/43612951
https://doi.org/10.2139/ssrn.3530220
http://dx.doi.org/10.2139/ssrn.3530220
http://dx.doi.org/10.2139/ssrn.3530220

ordering, and Consensus Instability in Decentralized Exchanges. arXiv: 1904.05234

[cs.CR] (cit. on pp. 2, 9, 10, 14).

DeLong, J. Bradford, Andrei Shleifer, Lawrence H. Summers, and Robert J. Waldmann

(1990). “Noise Trader Risk in Financial Markets”. In: Journal of Political Economy

98.4, pp. 703–738. issn: 00223808, 1537534X. url: http://www.jstor.org/stable/

2937765 (visited on 10/12/2022) (cit. on p. 15).

Dwork, Cynthia and Moni Naor (1992). “Pricing via Processing or Combatting Junk Mail”.

In: Proceedings of the 12th Annual International Cryptology Conference on Advances

in Cryptology. CRYPTO ’92. Berlin, Heidelberg: Springer-Verlag, pp. 139–147. isbn:

3540573402 (cit. on p. 6).

Erigon Team (Feb. 2022). Erigon. url: https://github.com/ledgerwatch/erigon (cit.

on pp. 15, 46).

Eskandari, Shayan, Seyedehmahsa Moosavi, and Jeremy Clark (2020). “SoK: Transparent

Dishonesty: Front-Running Attacks on Blockchain”. eng. In: Financial Cryptography

and Data Security. Lecture Notes in Computer Science. Cham: Springer International

Publishing, pp. 170–189. isbn: 9783030437244 (cit. on p. 9).

Hanson, Robin (2003). “Combinatorial information market design”. In: Information Sys-

tems Frontiers 5.1, pp. 107–119 (cit. on p. 11).

Härdle, Wolfgang Karl, Campbell R Harvey, and Raphael C G Reule (Feb. 2020). “Un-

derstanding Cryptocurrencies*”. In: Journal of Financial Econometrics 18.2, pp. 181–

208. issn: 1479-8409. doi: 10.1093/jjfinec/nbz033. eprint: https://academic.

oup.com/jfec/article- pdf/18/2/181/33218309/nbz033.pdf. url: https:

//doi.org/10.1093/jjfinec/nbz033 (cit. on p. 6).

Harvey, Campbell R., Tarek Abou Zeid, Teun Draaisma, Martin Luk, Henry Neville, Andre

Rzym, and Otto van Hemert (May 2022). “An Investor’s Guide to Crypto”. In: SSRN

Electronic Journal. doi: http://dx.doi.org/10.2139/ssrn.4124576 (cit. on p. 6).

Heimbach, Lioba, Ye Wang, and Roger Wattenhofer (2021). Behavior of Liquidity

Providers in Decentralized Exchanges. doi: 10 . 48550 / ARXIV . 2105 . 13822. url:

https://arxiv.org/abs/2105.13822 (cit. on pp. 11, 16).

Makarov, Igor and Antoinette Schoar (2020). “Trading and arbitrage in cryptocurrency

markets”. In: Journal of Financial Economics 135.2, pp. 293–319. issn: 0304-405X.

doi: https://doi.org/10.1016/j.jfineco.2019.07.001. url: https://www.

sciencedirect.com/science/article/pii/S0304405X19301746 (cit. on p. 3).

— (Apr. 2022). Cryptocurrencies and Decentralized Finance (DeFi). Working Paper

30006. National Bureau of Economic Research. doi: 10.3386/w30006. url: http:

//www.nber.org/papers/w30006 (cit. on pp. 6, 11).

37

https://arxiv.org/abs/1904.05234
https://arxiv.org/abs/1904.05234
http://www.jstor.org/stable/2937765
http://www.jstor.org/stable/2937765
https://github.com/ledgerwatch/erigon
https://doi.org/10.1093/jjfinec/nbz033
https://academic.oup.com/jfec/article-pdf/18/2/181/33218309/nbz033.pdf
https://academic.oup.com/jfec/article-pdf/18/2/181/33218309/nbz033.pdf
https://doi.org/10.1093/jjfinec/nbz033
https://doi.org/10.1093/jjfinec/nbz033
https://doi.org/http://dx.doi.org/10.2139/ssrn.4124576
https://doi.org/10.48550/ARXIV.2105.13822
https://arxiv.org/abs/2105.13822
https://doi.org/https://doi.org/10.1016/j.jfineco.2019.07.001
https://www.sciencedirect.com/science/article/pii/S0304405X19301746
https://www.sciencedirect.com/science/article/pii/S0304405X19301746
https://doi.org/10.3386/w30006
http://www.nber.org/papers/w30006
http://www.nber.org/papers/w30006

Nakamoto, Satoshi (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. White paper.

url: https://bitcoin.org/bitcoin.pdf (cit. on p. 6).

Qin, Kaihua, Liyi Zhou, and Arthur Gervais (2021). Quantifying Blockchain Extractable

Value: How dark is the forest? arXiv: 2101.05511 [cs.CR] (cit. on pp. 10, 55).

Savage, Leonard J. (1971). “Elicitation of Personal Probabilities and Expectations”. In:

Journal of the American Statistical Association 66.336, pp. 783–801. issn: 01621459.

url: http://www.jstor.org/stable/2284229 (visited on 08/03/2022) (cit. on p. 11).

SEC (Mar. 2019). Memorandum: Meeting with Bitwise Asset Management, Inc., NYSE

Arca, Inc., and Vedder Price P.C. Tech. rep. url: https://www.sec.gov/comments/

sr-nysearca-2019-01/srnysearca201901-5164833-183434.pdf (cit. on p. 3).

Shapley, Lloyd and Martin Shubik (1977). “Trade Using One Commodity as a Means

of Payment”. In: Journal of Political Economy 85.5, pp. 937–968. issn: 00223808,

1537534X. url: http://www.jstor.org/stable/1830340 (visited on 07/26/2022)

(cit. on p. 11).

Shynkevich, Andrei (2021). “Bitcoin arbitrage”. In: Finance Research Letters 40,

p. 101698. issn: 1544-6123. doi: https://doi.org/10.1016/j.frl.2020.101698.

url: https://www.sciencedirect.com/science/article/pii/S1544612320308886

(cit. on p. 3).

Szabo, Nick (Sept. 1997). “Formalizing and Securing Relationships on Public Networks”.

In: First Monday 2.9. doi: 10.5210/fm.v2i9.548. url: https://journals.uic.

edu/ojs/index.php/fm/article/view/548 (cit. on p. 7).

Torres, Christof Ferreira, Ramiro Camino, and Radu State (Aug. 2021). “Frontrunner

Jones and the Raiders of the Dark Forest: An Empirical Study of Frontrunning on the

Ethereum Blockchain”. In: 30th USENIX Security Symposium (USENIX Security 21).

USENIX Association, pp. 1343–1359. isbn: 978-1-939133-24-3. url: https://www.

usenix.org/conference/usenixsecurity21/presentation/torres (cit. on p. 9).

TrueBlocks Team (Feb. 2022). TrueBlocks: Lightweight indexing for any EVM-based

blockchain. url: https://trueblocks.io/ (cit. on p. 15).

Victor, Friedhelm and Andrea Marie Weintraud (Apr. 2021). “Detecting and Quantifying

Wash Trading on Decentralized Cryptocurrency Exchanges”. In: Proceedings of the

Web Conference 2021. doi: 10.1145/3442381.3449824. url: http://dx.doi.org/

10.1145/3442381.3449824 (cit. on p. 3).

Vogelsteller, Fabian and Vitalik Buterin (Nov. 2015). EIP-20: Token Standard. Ethereum

Improvement Proposal. url: https://eips.ethereum.org/EIPS/eip-20 (cit. on

p. 13).

38

https://bitcoin.org/bitcoin.pdf
https://arxiv.org/abs/2101.05511
http://www.jstor.org/stable/2284229
https://www.sec.gov/comments/sr-nysearca-2019-01/srnysearca201901-5164833-183434.pdf
https://www.sec.gov/comments/sr-nysearca-2019-01/srnysearca201901-5164833-183434.pdf
http://www.jstor.org/stable/1830340
https://doi.org/https://doi.org/10.1016/j.frl.2020.101698
https://www.sciencedirect.com/science/article/pii/S1544612320308886
https://doi.org/10.5210/fm.v2i9.548
https://journals.uic.edu/ojs/index.php/fm/article/view/548
https://journals.uic.edu/ojs/index.php/fm/article/view/548
https://www.usenix.org/conference/usenixsecurity21/presentation/torres
https://www.usenix.org/conference/usenixsecurity21/presentation/torres
https://trueblocks.io/
https://doi.org/10.1145/3442381.3449824
http://dx.doi.org/10.1145/3442381.3449824
http://dx.doi.org/10.1145/3442381.3449824
https://eips.ethereum.org/EIPS/eip-20

Wang, Dabao, Siwei Wu, Ziling Lin, Lei Wu, Xingliang Yuan, Yajin Zhou, Haoyu Wang,

and Kui Ren (May 2021a). “Towards A First Step to Understand Flash Loan and Its

Applications in DeFi Ecosystem”. In: Proceedings of the Ninth International Workshop

on Security in Blockchain and Cloud Computing. ACM. doi: 10.1145/3457977.

3460301. url: https://doi.org/10.1145%2F3457977.3460301 (cit. on p. 55).

Wang, Ye, Yan Chen, Shuiguang Deng, and Roger Wattenhofer (2021b). Cyclic Arbitrage

in Decentralized Exchange Markets. arXiv: 2105.02784 [q-fin.TR] (cit. on pp. 3, 17,

20).

Wood, Gavin (2014). Ethereum: A Secure Decentralised Generalised Transaction Ledger.

Yellow paper. url: http://gavwood.com/Paper.pdf (cit. on pp. 6, 40, 46).

Worsley, Nathan (2022). “MEV as an inner experience”. MEV.Day at Devconnect Ams-

terdam. url: https://www.youtube.com/watch?v=9iHlyaRsgYI (cit. on p. 24).

Xu, Jiahua, Krzysztof Paruch, Simon Cousaert, and Yebo Feng (2021). SoK: Decentralized

Exchanges (DEX) with Automated Market Maker (AMM) Protocols. doi: 10.48550/

ARXIV.2103.12732. url: https://arxiv.org/abs/2103.12732 (cit. on p. 12).

Zhang, Yi, Xiaohong Chen, and Daejun Park (2018). “Formal specification of constant

product (xy=k) market maker model and implementation”. In: White paper (cit. on

p. 11).

Zhou, Liyi, Kaihua Qin, Antoine Cully, Benjamin Livshits, and Arthur Gervais (2021a).

“On the Just-In-Time Discovery of Profit-Generating Transactions in DeFi Protocols”.

eng. In: 2021 IEEE Symposium on Security and Privacy (SP). IEEE, pp. 919–936. isbn:

1728189349 (cit. on pp. 8, 18).

Zhou, Liyi, Kaihua Qin, Christof Ferreira Torres, Duc V Le, and Arthur Gervais (May

2021b). “High-Frequency Trading on Decentralized On-Chain Exchanges”. In: 2021

IEEE Symposium on Security and Privacy (SP), pp. 428–445. doi: 10.1109/SP40001.

2021.00027 (cit. on pp. 8, 11).

39

https://doi.org/10.1145/3457977.3460301
https://doi.org/10.1145/3457977.3460301
https://doi.org/10.1145%2F3457977.3460301
https://arxiv.org/abs/2105.02784
http://gavwood.com/Paper.pdf
https://www.youtube.com/watch?v=9iHlyaRsgYI
https://doi.org/10.48550/ARXIV.2103.12732
https://doi.org/10.48550/ARXIV.2103.12732
https://arxiv.org/abs/2103.12732
https://doi.org/10.1109/SP40001.2021.00027
https://doi.org/10.1109/SP40001.2021.00027

A Ethereum state transition

Formally, the transition to the next global state can be described with the following set

of equations (Wood, 2014),

σt+1 ≡ Υ(σt, Ti) (12)

Σb+1 ≡ Π(Σb, Bb+1) (13)

Bb+1 ≡ (BH , BT , BU) (14)

BT ≡ (T0, T1, . . . , TI) (15)

where Υ is the Ethereum state transition function operating on a transaction-level basis.

Ti, i = 0, . . . , I, is a valid transaction and σt+1 is the state at transaction time t+ 1. Π is

the block level state transition function, Σb+1 is the global block state and Bb+1 is a block

in block time b + 1. Bb+1 contains valid transactions BT and the block information BH

and BU , called headers, containing important metadata about the current and previous

blocks.29 The global state is a mapping between addresses and account states and is

updated each time a new block is added to the blockchain. Importantly, Equation 12

shows that each valid transaction affect the Ethereum Virtual Machine state sequentially,

indicating that the blockchain state changes several times within each block.

29See Appendix C for a full description of the block data.

40

B Robustness analysis

4.47% of the arbitrage transactions are executed at block position 0. These transactions

are removed in the simulations presented in Figures 9a and 9b.

(a) Net profits with original transaction

costs, where the arbitrage transactions at

position 0 are removed.

(b) Net profits with updated transaction

costs, where the arbitrage transaction at po-

sition 0 are removed.

Figure 9: Counter factual simulation with 9 lags.

41

Table 7: Probit estimation: Arbitrage trades and non-arbitrage trades regressed on sum

of previous pirce changes.

(1) (2) (3) (4) (5)

All
July 2020 -
Nov 2020

Dec 2020 -
April 2021

May 2021 -
Sep 2021

Oct 2021 -
Feb 2022

PrevTransi 0.0470∗∗∗ 1.608∗∗∗ 0.551∗∗∗ 0.0718∗∗∗ 0.0261∗∗∗

(0.00188) (0.0270) (0.0165) (0.00472) (0.00204)

SameBlocki 0.000283 0.162∗∗∗ 0.592∗∗∗ 0.315∗∗∗ -0.0499∗∗∗

(0.0100) (0.0385) (0.0428) (0.0385) (0.0111)

PrevBlocki,1 0.0699∗∗∗ 0.801∗∗∗ 0.345∗∗∗ 0.0794∗∗∗ 0.0246∗∗∗

(0.00352) (0.0332) (0.0132) (0.00701) (0.00423)

PrevBlocki,2 0.0259∗∗∗ 0.0195∗∗∗ 0.217∗∗∗ 0.0797∗∗∗ 0.0123∗∗∗

(0.00288) (0.00526) (0.0152) (0.0102) (0.00363)

PrevBlocki,3 0.0250∗∗∗ 0.0127∗ 0.0524∗∗∗ 0.181∗∗∗ 0.0179∗∗∗

(0.00381) (0.00606) (0.0112) (0.0216) (0.00538)

PrevBlocki,4 0.0115∗∗ 0.0103 0.110∗∗∗ 0.00922 -0.00629

(0.00436) (0.00649) (0.0314) (0.00585) (0.0213)

PrevBlocki,5 -0.0124 -0.0484 0.0128 -0.00203 -0.0948∗∗∗

(0.00800) (0.0389) (0.0290) (0.00892) (0.0243)

PrevBlocki,6 -0.00993 -0.174∗∗∗ 0.00940 0.0856∗∗ -0.0370

(0.0105) (0.0393) (0.0138) (0.0272) (0.0239)

PrevBlocki,7 -0.00938∗ -0.00541 0.0839∗ -0.00259 -0.00894

(0.00429) (0.0249) (0.0360) (0.0116) (0.00470)

PrevBlocki,8 -0.0112∗∗∗ -0.142∗∗∗ 0.0554 0.0151 -0.00867∗∗

(0.00276) (0.0301) (0.0436) (0.0295) (0.00277)

PrevBlocki,9 -0.0722∗∗∗ -0.341∗∗∗ 0.135∗∗∗ 0.0243 -0.0627∗∗∗

(0.0131) (0.0464) (0.0386) (0.0321) (0.0172)

PrevBlocki,10 -0.00510 0.00170 -0.0688∗ 0.0799∗ -0.0372

(0.00786) (0.00837) (0.0348) (0.0372) (0.0240)

Constants 0.495∗∗∗ 0.351∗∗∗ 0.548∗∗∗ 0.608∗∗∗ 0.433∗∗∗

(0.000741) (0.00146) (0.00129) (0.00135) (0.00229)

N 463290 114701 154408 133478 47987

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

42

Table 8: OLS estimation: Arbitrage net profits regressed on max of previous price changes

without controls.

(1) (2) (3) (4) (5)

All
July 2020 -
Nov 2020

Dec 2020 -
April 2021

May 2021 -
Sep 2021

Oct 2021 -
Feb 2022

PrevTransi 19.94∗∗∗ 262.1∗∗∗ 1060.8∗∗∗ 17.25∗ 6.153∗

(2.409) (20.08) (23.44) (7.102) (2.869)

SameBlocki 391.0∗∗∗ 539.8∗∗∗ 593.0∗∗∗ 446.5∗∗∗ 140.3∗∗

(20.56) (42.44) (68.14) (29.72) (44.81)

PrevBlocki,1 10.12∗∗ 517.6∗∗∗ 21.08∗ 14.59 2.996

(3.583) (30.84) (9.105) (9.308) (4.849)

PrevBlocki,2 4.323 -1.540 92.48∗∗∗ 15.33 -0.872

(3.576) (3.456) (21.02) (11.77) (5.148)

PrevBlocki,3 0.475 0.978 3.061 -3.770 -1.357

(4.503) (4.315) (8.317) (23.03) (8.228)

PrevBlocki,4 5.257 2.430 10.43 4.096 9.341

(6.758) (4.613) (51.09) (12.45) (31.57)

PrevBlocki,5 105.0∗∗∗ 24.06 756.6∗∗∗ -23.61 43.26

(20.29) (43.36) (63.19) (34.17) (37.59)

PrevBlocki,6 13.78 11.71 -35.50 8.235 24.33

(15.19) (34.28) (22.69) (47.57) (30.70)

PrevBlocki,7 9.073 -31.48 84.17 -9.340 -7.173

(15.69) (25.86) (54.89) (33.86) (24.49)

PrevBlocki,8 53.37∗∗ 46.59 265.0∗∗∗ 23.40 11.75

(18.21) (53.66) (67.82) (43.58) (24.60)

PrevBlocki,9 10.70 106.1∗ -81.01 61.53 1.840

(10.82) (52.35) (70.12) (44.51) (13.10)

PrevBlocki,10 5.112 -0.0583 -85.51 -0.374 4.619

(8.725) (4.866) (67.25) (33.74) (40.58)

Constant 52.32∗∗∗ 28.23∗∗∗ 58.69∗∗∗ 27.73∗∗∗ 63.22∗∗∗

(1.375) (1.762) (2.366) (2.574) (4.845)

N 231639 42211 86830 81754 22278

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

43

Table 9: OLS estimation: Arbitrage net profits regressed on sum of previous price changes

with control variables.

(1) (2) (3) (4) (5)

All
July 2020 -
Nov 2020

Dec 2020 -
April 2021

May 2021 -
Sep 2021

Oct 2021 -
Feb 2022

PrevTransi 19.95∗∗∗ 264.8∗∗∗ 1059.9∗∗∗ 16.94∗ 6.229∗

(2.407) (20.06) (23.39) (7.096) (2.869)

SameBlocki 811.8∗∗∗ 753.9∗∗∗ 741.2∗∗∗ 1611.0∗∗∗ 168.3∗∗

(32.37) (48.26) (77.20) (63.29) (58.00)

PrevBlocki,1 13.61∗∗ 571.3∗∗∗ 27.39 18.90 4.524

(4.727) (32.62) (18.08) (10.49) (6.298)

PrevBlocki,2 10.96∗∗ -0.295 257.8∗∗∗ 19.94 -0.765

(3.909) (3.720) (21.36) (13.93) (5.609)

PrevBlocki,3 -4.082 1.098 3.992 -24.85 -3.255

(5.134) (4.314) (15.36) (33.12) (8.223)

PrevBlocki,4 1.575 2.137 53.98 1.342 -4.383

(5.948) (4.603) (47.46) (9.174) (37.84)

PrevBlocki,5 129.0∗∗∗ 43.59 415.6∗∗∗ -48.89 67.39

(25.03) (42.18) (49.33) (41.54) (71.21)

PrevBlocki,6 21.10 38.26 -44.56 -53.11 72.38

(25.00) (37.99) (73.95) (43.88) (51.11)

PrevBlocki,7 1.598 -13.27 23.41 -11.09 -47.37

(21.59) (20.38) (52.17) (60.46) (46.53)

PrevBlocki,8 24.43 7.055 157.8∗ -82.81 11.96

(19.80) (61.12) (66.42) (47.90) (26.80)

PrevBlocki,9 46.49∗ 106.4 30.63 47.08 6.137

(22.37) (54.54) (57.76) (64.46) (31.80)

PrevBlocki,10 5.383 -0.249 -34.76 -7.858 6.919

(10.64) (5.943) (62.36) (57.30) (39.19)
SameBlocki
Block time 0.187 0.146 0.375∗ -0.0781 -0.144

(0.108) (0.133) (0.184) (0.198) (0.355)
PrevBlocki,1
Block time 0.229∗ 0.0662 -0.238 0.776∗∗∗ -0.0716

(0.109) (0.130) (0.181) (0.201) (0.394)
PrevBlocki,2
Block time 0.0558 0.0542 0.000558 -0.113 0.681

(0.109) (0.130) (0.180) (0.203) (0.409)

Constant 44.57∗∗∗ 23.72∗∗∗ 56.18∗∗∗ 17.48∗∗∗ 57.92∗∗∗

(2.832) (3.508) (4.842) (5.230) (9.310)

N 231639 42211 86830 81754 22278

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

44

Table 10: OLS estimation: Arbitrage net profits regressed on sum of previous price changes

without controls.

(1) (2) (3) (4) (5)

All
July 2020 -
Nov 2020

Dec 2020 -
April 2021

May 2021 -
Sep 2021

Oct 2021 -
Feb 2022

PrevTransi 19.95∗∗∗ 265.6∗∗∗ 1060.2∗∗∗ 17.22∗ 6.192∗

(2.407) (20.04) (23.38) (7.096) (2.869)

SameBlocki 812.5∗∗∗ 754.8∗∗∗ 743.1∗∗∗ 1611.2∗∗∗ 168.2∗∗

(32.37) (48.25) (77.20) (63.29) (58.00)

PrevBlocki,1 13.76∗∗ 573.5∗∗∗ 27.83 18.99 4.567

(4.727) (32.56) (18.08) (10.49) (6.296)

PrevBlocki,2 11.01∗∗ -0.305 257.4∗∗∗ 20.72 -0.763

(3.909) (3.719) (21.36) (13.93) (5.607)

PrevBlocki,3 -4.089 1.125 4.035 -25.83 -2.997

(5.134) (4.314) (15.36) (33.11) (8.222)

PrevBlocki,4 1.613 2.158 53.19 1.352 -4.599

(5.948) (4.603) (47.46) (9.175) (37.84)

PrevBlocki,5 128.7∗∗∗ 43.57 415.6∗∗∗ -49.77 67.79

(25.03) (42.18) (49.33) (41.54) (71.21)

PrevBlocki,6 21.23 37.85 -44.56 -53.12 72.76

(25.00) (37.99) (73.95) (43.89) (51.10)

PrevBlocki,7 1.839 -13.14 23.81 -11.03 -46.30

(21.59) (20.38) (52.17) (60.47) (46.52)

PrevBlocki,8 24.54 7.423 157.3∗ -82.74 12.09

(19.80) (61.12) (66.42) (47.90) (26.80)

PrevBlocki,9 46.60∗ 106.3 31.05 47.33 5.735

(22.37) (54.53) (57.76) (64.47) (31.80)

PrevBlocki,10 5.439 -0.254 -34.89 -8.218 7.060

(10.64) (5.943) (62.36) (57.30) (39.19)

Constant 50.75∗∗∗ 27.19∗∗∗ 57.99∗∗∗ 25.13∗∗∗ 63.40∗∗∗

(1.379) (1.760) (2.380) (2.575) (4.841)

N 231639 42211 86830 81754 22278

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

45

C Data

This appendix describes the on-chain Ethereum data used in this paper in detail.

Ethereum on-chain data is structured into four tables blocks, transactions, receipts

and traces, and can be accessed through a JSON RPC API. The Ethereum protocol

specify a number of necessary fields for blocks, transactions and receipts (Wood, 2014).

In addition, trace logs are outputs from the Ethereum Virtual Machine that consist of

additional information about the transactions. Depending on what Ethereum client soft-

ware is used to query the data, the output can vary slightly. The sections C.1, C.2,

C.3 and C.4 show block, transaction, receipt and trace call responses from an Erigon

(Erigon Team, 2022) archive node.3031 The output descriptions have been compiled from

the official Ethereum documentation, OpenEthereum’s documentation, and Wood (2014).

Unnecessary verbose outputs are, at places, replaced with

C.1 Block data

Listing 1 shows the response from the archive node when calling the function

eth getBlockByHash. Description of the output data,

• baseFeePerGas: A scalar value equal to the minimum fee per gas required to be

included in the block.32

• difficulty: A scalar value corresponding to the difficulty level of this block. This

can be calculated from the previous block’s difficulty level and the timestamp.

• extraData: An arbitrary byte array containing data relevant to this block.

• gasLimit: A scalar value equal to the current limit of gas expenditure per block.

• gasUsed: A scalar value equal to the total gas used in transactions in this block.

• hash: The Keccak 256-bit hash of this block’s header.

• logsBloom: The Bloom filter composed from indexable information (logger address

and log topics) contained in each log entry from the receipt of each transaction in

the transaction list.

30The archive node is running on a Debian 11.2 machine with AMD Ryzen 5 1600 (6-core, 3.2GHz),

64GB of RAM and 4TB SSD.
31Example transaction hash: 0x0e5e386a2e3a80f1843f6520ebe2f0f118fd1939b36d8a3c00e2e90d2c88df8e.
32This is only present in type 2 transactions after the implementation of EIP-1559 in the London Hard

Fork 2021-08-05.

46

• miner: The 160-bit address to which the fees collected from the successful mining

of this block be transferred.

• mixHash: A 256-bit hash which proves combined with the nonce that a sufficient

amount of computation has been carried out on this block.

• nonce: A 64-bit hash which proves combined with the mix-hash that a sufficient

amount of computation has been carried out on this block.

• number: A scalar value equal to the number of ancestor blocks. The genesis block

has a number of zero.

• parentHash: The Keccak 256-bit hash of the parent block’s header.

• receiptsRoot: The Keccak 256-bit hash of the root node of the Merkle Patricia

tree structure populated with the receipts of each transaction in the transaction list

portion of the block.

• sha3Uncles: The Keccak 256-bit hash of the uncles list portion of this block.

• size: A scalar value equal to the size of the block.

• stateRoot: The Keccak 256-bit hash of the root node of the state Merkle Patricia

tree, after all transactions are executed and finalized.

• timestamp: A scalar value equal to the reasonable output of Unix’s time() at this

block’s inception.

• totalDifficulty: A scalar value equal to the total difficulty of the chain until this

block.

• transactions: A list of Keccak 256-bit hashes of the transactions included in this

block.

• transactionsRoot: The Keccak 256-bit hash of the root node of the Merkle Patricia

tree structure populated with each transaction in the transaction list portion of this

block.

• uncles: A list of Keccak 256-bit hashes of the uncle blocks.

1 {

2 "difficulty": "0xc4bbf8674df01",

3 "extraData": "0x307834383639373636353666366532303530366636663663",

4 "gasLimit": "0xbe150c",

47

5 "gasUsed": "0xbbd420",

6 "hash": "0xd85f9b3690a8aca172d096a408024c12da45eb4621e08982eaf886f1d12f5d

49",

7 "logsBloom": "0xdfe041d475201950871933f0a87d5da05a28b2980014c3ec829dd10a7

aa24a1454803c5d660542a6c22133663906cdd546d934080aa698f2ab981a70db2a4

dad11131500c7ce6303f82c04bd18214ce15ad2095f23480d5458cdd4ea9175d10176

1408849a0ec5b88031830c02268e3dcfe414221e648dc6032d5c92f6a8fc627e04b31

787792426df52f560a8a38e0bc003d4816ffd9cfbf911f5ef065dc8d7831e1640707c

61da0df797ac0528b183d3a100018ac06a61a1170c009c2ad28140d8e86ae1b406303

e846a688f6d85dc04088ec1c0fa443009327343a606b00da098359ca2218540352567

8cd5911a9d66758715b0da2954193d2707ba360a84",

8 "miner": "0x1ad91ee08f21be3de0ba2ba6918e714da6b45836",

9 "mixHash": "0xf58be2dacfb26108447da3d7809e44829fe35d9ac0bdba9115d3a41364

bfa29c",

10 "nonce": "0x21f0257c209b32dd",

11 "number": "0xacee03",

12 "parentHash": "0xe424fb2b560b5c7d405dacf2b92cee2dfc89726b365e10b034d776d7

b1a16365",

13 "receiptsRoot": "0xcf2a24c67500957ccf0faeff4dc0d3b268062d898e084d1f062867

442cb887e5",

14 "sha3Uncles": "0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd

40d49347",

15 "size": "0xa839",

16 "stateRoot": "0x13649aca35de0a40e1b1f53c50eab6b2766013877c8474a7bfd8b1b81

350f53b",

17 "timestamp": "0x5fbf71b6",

18 "totalDifficulty": "0x4045661d0d677d859d1",

19 "transactions": [

20 "0xa988d729ecb71c6402fbb893cb696e35f32b9a257eba0fc4be77adad443832bd",

21 "0x0af408473617105f24ed80117a267315eeadc65048fce857cf52529419629e3d",

22 "0x578d168a72a9a054f89155a5c38d64401a517f5fb46a64fc77ee796873205541",

23 ...

24 "0xc4713088a14c4be8954d03083bae9a28280ef55b4001005b72df0eaf22ffc87c",

25 "0x4eb4d31fdf54adab612ed64c0ab836bf0b9ab2f6d87a7e3b0f736e125f947133",

26 "0x4c2531e6dccb65e3d64f9f41ebb1dd4f86bf9b6aceadeecef669df417899ada2"

27],

28 "transactionsRoot": "0xdbc7459cf1eb23471bdedf2cb02a9140d4e2e1956b4366316b

1b83b82aeb4a8c",

29 "uncles": []

30 }

Listing 1: Erigon archive node block response.

48

C.2 Transaction data

Listing 2 shows the response from the archive node when calling the function

eth getTransactionByHash. Description of the output data,

• blockHash: The Keccak 256-bit hash of the block’s header this transaction is in-

cluded in.

• blockNumber: A scalar value equal to the block’s number this transaction is included

in.

• from: The 160-bit address of the sender.

• gas: A scalar value equal to the maximum amount of gas units that can be consumed

by the transaction.

• gasPrice: A scalar value specifying the gas price provided by the sender in wei.

• maxPriorityFeePerGas: A scalar value equal to the maximum amount of gas to be

included as a tip to the miner.33

• maxFeePerGas: A scalar value equal to the maximum amount of gas to be paid.34

• hash: The Keccak 256-bit hash of this transaction.

• input: An unlimited size byte array specifying the EVM-code for the account ini-

tialisation procedure.

• nonce: A scalar value equal to the number of transactions sent by the sender.

• to: The 160-bit address of the message call’s recipient.

• transactionIndex: A scalar value equal to this transactions’ position in the block.

• value: A scalar value equal to the number of Wei to be transferred to the message

call’s recipient or, in the case of a contract creation, as an endowment to the newly

created account.

• type: A scalar value indicating transaction type (0 for legacy transaction and 2 for

transaction type after EIP-1559).

• accessList: Optional list of addresses and storage keys that the transaction plans

to access.

33See footnote 32.
34See footnote 32.

49

• chainId: A scalar value indicating which chain this transaction is on (1 for Ethereum

Mainnet).

• v, r and s: Values corresponding to the signature of the transaction and used to

determine the sender of the transaction.

1 {

2 "blockHash": "0xd85f9b3690a8aca172d096a408024c12da45eb4621e08982eaf886f1d

12f5d49",

3 "blockNumber": "0xacee03",

4 "from": "0x000000007cb2bd00ae5eb839930bb7847ae5b039",

5 "gas": "0x4c959",

6 "gasPrice": "0x1ddc4aadade",

7 "hash": "0x0e5e386a2e3a80f1843f6520ebe2f0f118fd1939b36d8a3c00e2e90d2c88df

8e",

8 "input": "0x00

028000d4c20

000000000000000000000000000000000b3f879cb30fe243b4dfee438691c...882f0

001662e93021bfb0ca856e1000000

00c5beefbbfa5688",

9 "nonce": "0x37b8",

10 "to": "0x00000000000080c886232e9b7ebbfb942b5987aa",

11 "transactionIndex": "0xd",

12 "value": "0x0",

13 "type": "0x0",

14 "v": "0x26",

15 "r": "0x83de603b9714fbd2b5446b9061bedd5bf8ba4868567595d82022378ae700054f"

,

16 "s": "0x708e255f2a98120084267dbce82c739c6c1275a03c10f4c6cd1d7e4c5d361730"

17 }

Listing 2: Erigon archive node transaction response.

C.3 Receipt data

Listing 3 shows the response from the archive node when calling the function

eth getTransactionReceipt. Description of the output data,

• blockHash: The Keccak 256-bit hash of the block’s header this transaction is in-

cluded in.

• blockNumber: A scalar value equal to the block’s number this transaction is included

in.

50

• contractAddress: The Keccak 256-bit hash of the address if a contract was created,

otherwise null.

• cumulativeGasUsed: A scalar value equal to the total amount of gas used when this

transaction was executed in the block.

• effectiveGasPrice: A scalar value equal to the gas price used by the transaction.

• from: The 160-bit address of the sender.

• gasUsed: A scalar value equal to the gas used by the transaction.

• logs: A list of log objects.

– address: The 160-bit address to the contract emitting the event.

– topics: An array of Keccak 256-bit hashes of contract functions including

arguments.

– data: Byte array specifying the arguments for the contract function called.

– blockNumber: A scalar value equal to the block’s number this transaction is

included in.

– transactionIndex: A scalar value equal to this transactions’ position in the

block.

– blockHash: The Keccak 256-bit hash of the block’s header this transaction is

included in.

– logIndex: A scalar value equal to this logs’ position in logs.

– removed: Boolean indicating if the log was removed in a reorg.

• logsBloom: The Bloom filter composed from indexing information.

• status: A scalar value indicating if the transaction was successfully mined.

• to: The 160-bit address of the message call’s recipient.

• transactionHash: The Keccak 256-bit hash of this transaction.

• transactionIndex: A scalar value equal to this transactions’ position in the block.

• type: A scalar value indicating transaction type (0 for legacy transaction and 2 for

transaction type after EIP-1559).

51

1 {

2 "blockHash": "0xd85f9b3690a8aca172d096a408024c12da45eb4621e08982eaf886f1d

12f5d49",

3 "blockNumber": "0xacee03",

4 "contractAddress": null,

5 "cumulativeGasUsed": "0x172b16",

6 "effectiveGasPrice": "0x1ddc4aadade",

7 "from": "0x000000007cb2bd00ae5eb839930bb7847ae5b039",

8 "gasUsed": "0x197a4",

9 "logs": [

10 {

11 "address": "0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2",

12 "topics": [

13 "0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef

",

14 "0x000000000000000000000000a478c2975ab1ea89e8196811f51a7b7ade33eb11

",

15 "0x000000000000000000000000fbc312fa3b5be4e7631db2901ae7e0e79a764c9b

"

16],

17 "data": "0x00d68fba3c3c11

e53108",

18 "blockNumber": "0xacee03",

19 "transactionHash": "0x0e5e386a2e3a80f1843f6520ebe2f0f118fd1939b36d8a3

c00e2e90d2c88df8e",

20 "transactionIndex": "0xd",

21 "blockHash": "0xd85f9b3690a8aca172d096a408024c12da45eb4621e08982eaf88

6f1d12f5d49",

22 "logIndex": "0x39",

23 "removed": false

24 },

25 ...

26 }

27],

28 "logsBloom": "0x002000004020000000000010800100000000000000000000000000000

000000000000000000000000000000200000000020000000800000000000000000000

000000000002000001000000080000002000000000000000000000000000000000100

0000000008000100000000000000000

000000200000000000000000000000000010000800000041000000000000000000000

000000000000000000000000000000000000002000000000000000000420004000000

000000004000000000020000000010000000000000000400002000000000000000000

40000000000000000000800000000000000000000",

29 "status": "0x1",

52

30 "to": "0x00000000000080c886232e9b7ebbfb942b5987aa",

31 "transactionHash": "0x0e5e386a2e3a80f1843f6520ebe2f0f118fd1939b36d8a3c00e

2e90d2c88df8e",

32 "transactionIndex": "0xd",

33 "type": "0x0"

34 }

Listing 3: Erigon archive node receipt response.

C.4 Trace call data

Listing 4 shows the response from the archive node when calling the function

trace replayTransaction. Description of the output data,

• output: String.

• stateDiff: Array.

• trace:

– action:

∗ from: The 160-bit address of the trace initiator.

∗ callType: String of the type of call.

∗ gas: Maximum number of gas allowed for this trace.

∗ input: Byte array of data specifying the EVM-code for the action.

∗ to: The 160-bit address to the trace recipient.

∗ value: A scalar value equal to the number of Wei to be transferred to the

recipient.

– result:

∗ gasUsed: Gas used by the trace.

∗ output: Byte array of the result of the call for this trace.

– subtraces: The number of children traces.

– traceAddress: Array of a particular trace address in the trace tree.

– type: String of the type of trace.

• vmTrace: VmTrace object.

1 {

2 "output": "0x00

0004",

53

3 "stateDiff": null,

4 "trace": [

5 ...,

6 {

7 "action": {

8 "from": "0x00000000000080c886232e9b7ebbfb942b5987aa",

9 "callType": "call",

10 "gas": "0x35b60",

11 "input": "0x022c0d9f000

000

d68fba3c3c11e53108000000000000000000000000fbc312fa3b5be4e7631db

2901ae7e0e79a764c9b00

000000000000000000800

000000000000000000080000000000000000000000000c02aaa39b223fe8d0a

0e5c4f27ead9083c756cc2000

0000010d0ca8041bb5d3108000000000000000000000000c3d03e4f041fd4cd

388c549ee2a29a9e5075882f000000000000000000000000000000000000000

00001662e93021bfb0ca856e1",

12 "to": "0xa478c2975ab1ea89e8196811f51a7b7ade33eb11",

13 "value": "0x0"

14 },

15 "result": {

16 "gasUsed": "0x209dc",

17 "output": "0x"

18 },

19 "subtraces": 4,

20 "traceAddress": [

21 2

22],

23 "type": "call"

24 }

25 ...,

26],

27 "vmTrace": null

28 }

Listing 4: Erigon archive node trace response.

54

D Empirical classification

The arbitrage classification consists of three parts: Detecting arbitrage transactions, de-

tecting sandwich arbitrage bundles, and detecting transactions using flash swaps. This

appendix describes the empirical classification strategy with more technical details.

D.1 Arbitrage detection

To detect arbitrage transactions the following process is used,

1. Necessary swap actions:

(a) At least two Swap events are emitted.

(b) All Swap events must form a loop, the input asset and amount of any swap

action must be the output asset and amount of the previous action.

(c) The input asset of the first swap action and the output asset of the last swap

action must be the same, closing the loop.

2. Atomic transaction: All swap actions must be included in a single transaction.

3. Pure arbitrage:

(a) The transaction receipt log should only contain Transfer, Sync and Swap

events, ensuring that nothing other than DEX trading takes place in the trans-

action.

(b) The transaction need to be profitable.

(c) The transaction need to pay a non-zero fee to the miner.

(d) Flash swap transactions were classified and then removed using the following

conditions (Wang et al., 2021a):

i. The length of the parameter data in the transaction’s trace is greater than

zero.

ii. The internal transaction triggered by uniswapV2Call must include the

invocation of transfer or transferFrom function.

iii. The receiver address of transfer or transferFrom function must be the

pair contract.

(e) Sandwich bundles were classified and then removed using the following criterion

(Qin, Zhou, and Gervais, 2021):

i. The transactions must be executed by the same address.

55

ii. The transactions must be in the same block and their transaction positions

must be within one step from each other.

iii. The transactions’ swap events must include the same tokens and trade in

opposite directions.

iv. There must be one other transaction in between the transactions trading

at least one currency pair of the transactions.

4. Simple arbitrage: A token pair should at most occur in two Swap events, ensuring

that only one arbitrage trade is executed per transaction.

56

	Introduction
	The Ethereum Blockchain and Decentralized Exchanges
	Ether and Ethereum
	Ethereum transactions
	Atomicity
	Transaction validation and blocks
	Front-running
	Private transactions

	Decentralized exchanges
	Automated market makers
	Crypto assets traded on decentralized exchanges

	Arbitrage on decentralized exchanges
	Arbitrage atomicity
	Arbitrageurs' profits and costs

	Primary transaction data
	Transaction classification
	Overview of the data
	Detecting completed arbitrage transactions
	Approximating arbitrage transaction costs
	Arbitrage transactions' position in blocks

	Arbitrage analysis
	Snapshot of arbitrages
	Counterfactual simulation
	Predicting arbitrages by prior trading
	The effect of prior trading on arbitrage profits

	Conclusion
	Ethereum state transition
	Robustness analysis
	Data
	Block data
	Transaction data
	Receipt data
	Trace call data

	Empirical classification
	Arbitrage detection

